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Abstract. The MEME algorithm extends the expectation maximization (EM) algorithm for

identifyingmotifs in unalignedbiopolymer sequences. The aim ofMEME is to discover new motifs

in a set of biopolymer sequences where little or nothing is known in advance about any motifs that

may be present. MEME innovations expand the range of problems which can be solved using EM

and increase the chance of �nding good solutions. First, subsequences which actually occur in the

biopolymer sequences are used as starting points for the EM algorithm to increase the probability

of �nding globally optimal motifs. Second, the assumption that each sequence contains exactly

one occurrence of the shared motif is removed. This allows multiple appearances of a motif to

occur in any sequence and permits the algorithm to ignore sequences with no appearance of the

shared motif, increasing its resistance to noisy data. Third, a method for probabilistically erasing

shared motifs after they are found is incorporated so that several distinct motifs can be found in

the same set of sequences, both when di�erent motifs appear in di�erent sequences and when a

single sequence may contain multiple motifs. Experiments show that MEME can discover both

the CRP and LexA binding sites from a set of sequences which contain one or both sites, and that

MEME can discover both the �10 and �35 promoter regions in a set of E. coli sequences.

Keywords: Unsupervised learning, expectationmaximization, consensus sequence,motif, biopoly-
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1. Introduction

The problem addressed by this work is that of identifying and characterizing shared

motifs in a set of unaligned genetic or protein sequences. A motif is de�ned here as

a pattern common to a set of nucleic or amino acid subsequences which share some

biological property of interest such as being DNA binding sites for a regulatory

protein. In computer science terminology, the problem is, given a set of strings, to

�nd a set of non-overlapping, approximately matching substrings. In this report

we are concerned only with contiguous motifs. In biological terms, this means that

appearances of a motif may di�er in point mutations, but insertions or deletions

are not allowed. In computer science terms, this means that the approximately

matching substrings must all have the same length. A simpler version of the problem

is, given a dataset of biopolymer sequences believed to contain a single shared motif,

to locate the starting position in each sequence of the appearance of the shared motif

and to describe the shared motif. This report addresses the more general problem

of �nding and describing multiple, distinct shared motifs in a set of biopolymer
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sequences. It is not assumed that anything is known in advance about the width,

position or letter frequencies of the motifs, or even how many common motifs may

exist in a set of sequences.

Several methods have been presented in the literature which work on problems re-

lated to discovering multiple, distinct shared motifs in a set of biological sequences.

The purpose of this research is to extend the range of problems that can be attacked.

Hertz et al. [11] presented a greedy algorithm for discovering a single, shared motif

that is present once in each of a set of sequences. Lawrence and Reilly [14] extended

that work by developing an expectation maximization (EM) algorithm for solving

the same problem. Lawrence et al. [13] solve the related problem of discovering

multiple, distinct motifs when the number of occurrences of each motif in each

sequence is known using a Gibbs sampling strategy.

This report describes MEME, a new tool intended to help discover motifs when

neither the number of motifs nor the number of occurrences of each motif in each

sequence is known.

1

MEME incorporates three novel ideas for discovering motifs.

� First, subsequences which actually occur in the input DNA or protein sequences

are used as the starting points from which EM converges iteratively to locally

optimal motifs. This increases the likelihood of �nding globally optimal motifs.

� Second, a heuristic modi�cation of the EM algorithm allows the assumption

that each sequence contains exactly one occurrence of the shared motif to be

removed. This allows multiple appearances of a motif to occur in any sequence

and permits the algorithm to ignore sequences with no appearance of a shared

motif, which increases its resistance to noisy data.

� Third, motifs are probabilistically erased after they are found. This allows

several distinct motifs to be found in the same set of sequences, both when

di�erent motifs appear in di�erent sequences and when a single sequence may

contain multiple motifs.

1.1. Searching tools versus learning tools

This section explains the place of MEME, in the spectrum of sequence analysis

tools. Experts on biological sequence analysis may wish to skip directly to the next

section.

Searching tools. Sequence analysis tools may be divided into two broad cate-

gories, searching tools and learning tools. grail, blastx, fasta, etc. are searching

tools, whereas MEME is a learning tool. A searching tool (also called a pattern-

matching tool) takes as input one or more sequences and a pattern, and decides if

the pattern matches each input sequence, and if so, where. The pattern may be

(i) another sequence, as with blastx and fasta, (ii) a consensus subsequence or

regular expression de�ning a motif, as with ProSearch [12], or (iii) a more high-level

combination of features, as with grail [20].
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Learning tools. A supervised learning tool (also called a supervised pattern-

recognition tool) takes as input a set of sequences, and discovers a pattern that

all the sequences share. Supervised learning is often done by humans rather than

by software, because it is an open-ended problem that is harder than searching.

For example, the prosite pro�les were created by Amos Bairoch by personally

examining families of proteins [2].

An unsupervised learning tool takes as input a set of sequences, and discovers a

pattern that some of the sequences share. Unsupervised learning is harder than

supervised learning because the space of possible patterns is much larger. The

pattern to be discovered is not required to be in any given input sequence, so the

unsupervised learning algorithm must simultaneously look for a cluster of input

sequences and a pattern that the members of this cluster do have in common.

MEME performs unsupervised learning.

The output of a learning tool, namely a pattern, is often given to a search tool

in order to �nd new sequences that exhibit the pattern. However, even if all the

members of a family of sequences are already known, applying a learning tool to

the family can still be useful, because examining the patterns that subsets of the

family have in common can give insight into structure, function, and evolution.

1.2. The expectation maximization (EM) algorithm

Lawrence and Reilly [14] introduced the expectation maximization method as a

means of solving a supervised motif learning problem. Their algorithm takes as in-

put a set of unaligned sequences and a motif length (W ) and returns a probabilistic

model of the shared motif. The idea behind the method is that each sequence in the

dataset contains a single example of the motif. We shall refer to this model of the

data as the `one-occurrence-per-sequence' model or just the `one-per' model. It is

assumed that where the motif appears (what its starting o�set is) in each example

is unknown. If this were known, subsequences of length W from each sequence

starting at the known o�set could be aligned, since no insertions or deletions are

allowed, and the observed frequencies of the letters in each column of the alignment

could be used as a model of the motif.

In fact, if each example of the motif is assumed to have been generated by a

sequence of independent, discrete randomvariables, then the observed frequencies of

the letters in the columns are the maximumlikelihood estimates of the distributions

of the random variables. Of course, since the original sequences in the dataset are

unaligned, the o�sets are not known, so they must also be estimated. To do this,

the EM algorithm estimates the probability that the shared motif starts in position

j in sequence i in the dataset, given the data and an initial guess at a description

of the motif. These probability estimates, ẑ

ij

, are then used to reestimate the

probability of letter l in column c of the motif, �

lc

, for each letter in the alphabet

and 1 � c � W . How the reestimations are done is described in the Appendix.

The EM algorithm alternately reestimates z and � until � changes very little from
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iteration to iteration. (The notation z is used to refer to the matrix of o�set

probabilities z

ij

. Likewise, � refers to the matrix of letter probabilities �

ij

.)

A pseudo-code description of the basic EM algorithm is given below. EM starts

from an estimate of the model parameters, �, provided by the user or generated at

random.

1. EM (dataset, W ) f

2. choose starting point (�)

3. do f

4. reestimate z from �

5. reestimate � from z

6. g until (change in � < �)

7. return

8. g

The EM algorithm simultaneously discovers a model of the motif (the sequence

of independent discrete random variables with parameters �) and estimates the

probability of each possible starting point of examples of the motif in the sequences

in the dataset (z). By de�nition [8], the likelihood of the model given the training

data is the probability of the data given the model. The EM algorithm �nds values

of the model parameters which maximize the expected likelihood of the data given

the model �, and the missing data z. For the one-occurrence-per-sequence model

of the data used by Lawrence and Reilly [14], the logarithm of the likelihood is

log(likelihood) = N

W

X

j=1

X

l2L

f

lj

log(�

lj

) + N (L�W )

X

l2L

f

l0

log(�

l0

)

+ N log(

1

L �W + 1

)

where N is the number of sequences in the dataset, L is the length of the sequences,

W is the length of the shared motif, L is the alphabet of the sequences, �

lj

is the

(unknown) probability of letter l in position j of the motif, �

l0

is the (unknown)

probability of letter l in all non-motif positions, f

lj

is the observed frequency of the

letter l in position j of the motif, and f

l0

is the observed l in all non-motif positions

of the sequences.

It has been shown that expectation maximization algorithms �nd values for the

model parameters at which the likelihood function assumes a local maximum [7].

It is reasonable to assume that the correct solution to the problem of characterizing

the shared motif occurs at the global maximum of the likelihood function. For this

reason, all else being equal, parameter values for the model which give higher values

of the likelihood function are considered better solutions to the problem.

2
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1.3. Limitations of EM and the one-occurrence-per-sequence model.

EM and the one-per model su�er from several limitations. First, it is not clear how

to choose a starting point (an initial value of �) nor when to quit trying di�erent

starting points. This makes it di�cult to be satis�ed that the correct shared motif

has been found. Second, the one-per model assumes that each sequence in the

dataset contains exactly one appearance of the shared motif. This means that

sequences with multiple appearances will under-contribute, and sequences with no

appearances will over-contribute to the characterization of the motif. Having many

sequences with no appearances of the motif in the dataset may make it impossible

for EM with the one-per model to �nd the shared motif at all. Finally, EM with

the one-per model assumes that there is only one shared motif in the sequences,

and does not keep looking for further motifs after characterizing one. This makes

EM with the one-per model incapable of �nding motifs with insertions of variable

length and incapable of discovering multiple motifs that may occur in the same or

di�erent sequences in a given dataset. Eliminating or reducing these limitations

of EM with the one-per model would make the method less susceptible to noise

in the dataset, able to �nd more complex patterns in the data, and last but not

least, useful for exploring datasets which may contain instances of several di�erent

motifs.

The algorithm described in this report, MEME, extends the EM algorithm to

overcome the limitations described above. MEME chooses starting points system-

atically, based on all subsequences of sequences in the training dataset. It allows

the use of either the one-per model or a di�erent model which eliminates the as-

sumption of one sequence/one occurrence and allows each sequence to contain zero,

one or several appearances of the shared motif. We call this new model the `n-

occurrences-per-dataset' model or just the `n-per' model. because the it assumes

that the dataset contains exactly n occurrences of the motif, where n is speci�ed by

the user. Finally,MEME probabilistically erases the appearances of a motif after it

is found, and continues searching for further shared motifs in the dataset.

The MEME algorithm with the n-per model was tested on two datasets. The �rst

was a dataset combining 18 E. coli sequences containing CRP binding sites [14]

and 16 sequences containing LexA binding sites [11]. MEME discovered the LexA

binding site on its �rst pass and the CRP binding site on its second pass. The second

dataset contained 231 E. coli promoter sequences [9].

3

MEME discovered the TATAAT

and TTGACA consensus sequences

4

on the �rst and second passes, respectively. This

demonstrates the ability of MEME to avoid local optima, to tolerate large number

of sequences which do not contain the motif, and to �nd multiple motifs in a single

dataset.

2. The MEME algorithm

The MEME algorithm has at its core a modi�ed version of the EM algorithm [14].

The pseudo-code for the algorithm is given below. In the inner loop, an algorithm
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based on the EM algorithm is run repeatedly with di�erent starting points for the

chosen model (either one-per model or n-per model). We shall refer to this partic-

ular application of the EM algorithm as simply `EM' in what follows. The starting

points are derived from actual subsequences which occur in the input dataset. EM

is run only one iteration, not to convergence, from each starting point to save time.

Each run of EM produces a probabilistic model of a possible shared motif. The

starting point which yields the model with the highest likelihood is chosen and EM

is run to convergence from this starting point. The model of the shared motif thus

discovered is printed. Finally, all appearances of the shared motif in the dataset are

erased. The outer loop repeats the whole process to discover further shared motifs.

The following sections describe each of these steps of the algorithm in more detail.

1. MEME (dataset, W , NSITES , PASSES) f

2. for i = 1 to PASSES f

3. for each subsequence in dataset f

4. run EM for 1 iteration with starting point

5. derived from this subsequence

6. choose model of shared motif with highest likelihood

7. run EM to convergence from starting point

8. which generated that model

9. print converged model of shared motif

10. erase appearances of shared motif from dataset

11. g

12. g

13. g

The output of MEME includes a speci�city or log-odds matrix, spec. The log-

odds matrix has L rows and W columns and is calculated as spec

ij

= log(�̂

ij

=�̂

0j

)

for i 2 L and j = 1; : : : ;W . The information content score of a subsequence is

calculated by summing the entries in the matrix corresponding to the letters in

the subsequence.

5

This score gives a measure of the likelihood of the subsequence

being an instance of the motif versus an instance of the \background". Together

with a suitable threshold, the information content score can be used to classify

subsequences in new sequences not part of the training set.

2.1. Using subsequences as starting points for EM

Given di�erent starting points (i.e., initial letter probability matrices �) the EM

algorithmmay converge to di�erent �nal models. These models are local maxima of

the likelihood function described earlier. The correct model for the shared motif is

expected to be the model which globally maximizes the likelihood function, but EM

is not guaranteed to �nd the global maximum, only a local maximum. Previous



UNSUPERVISED LEARNING OF MULTIPLE MOTIFS IN BIOPOLYMERS USING EM 57

authors ([14], [5]) have recommended using several starting points for EM and

choosing the model with the highest likelihood, but how to choose the starting

points has not been discussed in detail.

One might try using randomly chosen letter frequency matrices as starting points,

but the sequences in the dataset provide a way to choose more intelligent ones.

Since our models for motifs do not allow for insertions or deletions, the optimal

model must agree very well with some contiguous subsequences of the sequences in

the dataset|the instances of the motif in the sequences. A good way to search the

space of possible starting points for EM should thus be to convert each subsequence

of length W into a letter probability matrix and use each such matrix as a starting

point. This is the approach used byMEME. Since the starting point letter frequency

matrices obtained from subsequences corresponding to the actual occurrences of the

shared motif should be \close" to the correct letter probability matrix (i.e., model),

EM should tend to converge to the global optimumwhen run with them as starting

points.

6

For example, suppose the unknown optimal value of � for the shared motif that

we are trying to discover using MEME is actually

letter position in motif

1 2 3 4 5 6

A 0.1 0.8 0.1 0.5 0.6 0.1

C 0.1 0.1 0.1 0.3 0.2 0.1

G 0.2 0.0 0.1 0.1 0.1 0.1

T 0.6 0.1 0.7 0.1 0.1 0.7

and the consensus sequence is TATAAT. Presumably, this sequence or something close

to it (i.e., with few mutations) occurs in at least one of the sequences in the dataset.

It is reasonable to postulate that if we choose as a starting point for EM a letter

probability matrix derived in some simple manner from the consensus sequence, or

a subsequence similar to it, then EM should tend to converge to the optimal model.

If we try all of the subsequences (of length six in this example) of the sequences in

the dataset, it is reasonable to assume that at least one of them will be \close" to

TATAAT and will cause EM to converge to the optimal model. (Note that MEME

does not use all possible subsequences of a given length, just the ones which actually

occur in the dataset.)

The question remains of how to convert a subsequence into a letter probability

matrix. One cannot simply convert it to a matrix with probability 1.0 for the letter

in the subsequence and 0.0 for all others, i.e., convert TATAAT to

letter position in motif

1 2 3 4 5 6

A 0.0 1.0 0.0 1.0 1.0 0.0

C 0.0 0.0 0.0 0.0 0.0 0.0

G 0.0 0.0 0.0 0.0 0.0 0.0

T 1.0 0.0 1.0 0.0 0.0 1.0
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because the EM algorithm cannot move from such a starting point. With such a

starting point, all o�set probabilities will be estimated to be 0.0 except for sub-

sequences which match the starting point subsequence exactly. This will cause

reestimation of the letter frequencies to yield the starting point again.

An e�ective, if somewhat arbitrary solution is to �x the frequency of the letter

in the subsequence at some value 0 < X < 1, and �x the frequencies of the other

letters at (1 � X)=(M � 1) where M is the length of the alphabet. This ensures

that the frequencies in each column sum to 1.0 and that, for X close to 1.0, the

starting point is \close" to the subsequence. The results reported in this paper are

for X = 0:5. Values of X between 0.4 and 0.8 worked approximately equally well

(experimental data not shown). With this value of X, the starting point for EM

generated from the subsequence TATAAT is

letter position in motif

1 2 3 4 5 6

A 0.17 0.5 0.17 0.5 0.5 0.17

C 0.17 0.17 0.17 0.17 0.17 0.17

G 0.17 0.17 0.17 0.17 0.17 0.17

T 0.5 0.17 0.5 0.17 0.17 0.5

It would be highly expensive computationally to run EM until convergence from

every possible starting point corresponding to some subsequence of length W in

the input dataset. It turns out that this is not necessary. EM converges so quickly

from subsequences which are similar to the shared motif that the best starting point

can often be detected by running only one iteration of EM. As will be described

below, MEME was able to �nd shared motifs when run for only one iteration from

each possible subsequence starting point, and then run until convergence from the

starting point with the highest likelihood. In other words, MEME runs EM for

speci�ed number of iterations (one iteration in all the results reported here) on

each subsequence starting point, chooses the starting point that yields the highest

likelihood, and then runs EM to convergence from this starting point.

Since each iteration of the EM algorithm takes computation time roughly linear

in the size of the dataset, and the number of subsequences is linear in the size of the

dataset, MEME takes time O(n

2

) where n is the size of the dataset in characters.

2.2. Dealing with multiple appearances of a shared motif

MEME allows the user to specify that either the one-per model or the n-per model

be used. With the one-per model, MEME uses the EM algorithm of Lawrence and

Reilly [14] to �t the model to the dataset. To �t the n-per model, a heuristic

modi�cation of the EM algorithm is used.

The one-per model assumes that each sequence in the dataset contains exactly one

appearance of the shared motif to be characterized. This assumption determines the

way in which the o�set probabilities are reestimated. The reestimation procedure

ensures that the o�set probabilities for each sequence sum to 1:0. This means
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that if a given sequence has more than one appearance of the shared motif, it

cannot contribute any more to the reestimation of the letter frequencies than a

sequence with only one appearance. Additionally, if a sequence has no appearances

of the shared motif|a common event when exploring for new shared motifs|it

contributes erroneously to the reestimation of the letter frequencies.

MEME modi�es the EM algorithm a when �tting the n-per model to a dataset.

Instead of normalizing the reestimated o�set probabilities to sum to 1:0 for each

sequence, all o�set probabilities are normalized to sum to a user-supplied value

NSITES , subject to the constraint that no single o�set probability may exceed

1.0. This normalization is done over all sequences simultaneously, not sequence by

sequence. The intent is for NSITES to be the expected number of appearances of

the shared motif in the dataset. If NSITES is set equal to the number of sequences

in the dataset, it is possible for the n-per model to get approximately the same

results as the one-per model on a dataset that has one appearance of the shared

motif in each sequence. For datasets with the appearances of the motif distributed

other than one per sequence, the MEME with the n-per model is able to choose

models that assign the o�set probabilities in any fashion which satis�es the two

constraints mentioned above.

The relaxation of the one motif appearance per sequence constraint in the n-per

model allows MEME to bene�t from sequences with multiple appearances of the

shared motif. It also can help alleviate the problem of sequences which do not

contain the motif blurring its characterization. When NSITES is lower than the

number of sequences in the dataset, MEME can assign very low o�set probabilities

to all positions in a sequence that does not contain the motif at all. By contrast,

the one-per model must assign o�set probabilities summing to 1.0 to each sequence

in the dataset. The e�ect of various settings for NSITES is discussed in Section

4.3. In summary, the exact value chosen for NSITES is not critical, so it is not

necessary to know in advance exactly how many times a motif is present in the

dataset.

One side e�ect of allowing a single sequence to have o�set probabilities that sum

to more than 1.0 is that long repeated sequences are seen by MEME using the n-

per model as though they were multiple appearances of a shorter sequence. For

example, if W is 6, the sequence AAAAAAAA is treated by the n-per model roughly

as though it were three appearances of the sequence AAAAAA. This is so because

the n-per model might allow o�sets 1, 2 and 3 of the sequence to have the maxi-

mum probability of 1.0. (The one-per model would not allow this, since the total

o�set probability for a single sequence must sum to 1.0.) This is problematic be-

cause it is far more surprising to �nd 3 non-overlapping occurrences of the sequence

AAAAAA than to �nd one occurrence of sequence AAAAAAAA. So, we would like MEME

to search for NSITES non-overlapping occurrences of the motif. To overcome this

di�culty,MEME enforces an additional constraint when calculating the o�set prob-

abilities for the n-per model. It renormalizes the o�set probabilities so that no W

adjacent o�sets have probabilities that sum to greater than 1.0. This essentially

makes the n-per model treat sequences like AAAAAAAA the same way as the one-per
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model does, assigning at most probability 1=3 to each of the three o�sets at which

identical subsequences AAAAAA start.

2.3. Finding several shared motifs

When a single dataset of sequences contains more than one distinct shared motif,

EM with the one-per model cannot directly �nd more than one of them. If the

motifs have some similarity, EM may always converge to the most conserved motif.

7

Another possibility is that EM may converge to a model that describes part of the

most conserved motif|its left or right side for instance. The MEME algorithm

solves this problem by probabilistically erasing the shared motif found by EM and

then repeating EM to �nd the next shared motif. By e�ectively removing each

motif as it is found, MEME is able to �nd the next motif without interference from

the more conserved motifs found �rst.

The manner in which MEME erases a motif is designed to be as continuous as

possible. New variables w

ij

are de�ned which associate a weight with position j

in sequence i. The weights represent the probability that the given position in

the given sequence is not part of a motif previously discovered by MEME. The

weights are all set initially to 1.0. After MEME discovers a shared motif, the o�set

probability z

ij

gives the probability that an appearance of the motif starts at a

position j in sequence i. So, assuming independence, the probability that position

k in sequence i is not part of the newly discovered motif is the product of (1� z

ij

)

for all j between k �W and k. So the old value of w

ij

is updated by multiplying

it by the probability that no potential motif which overlaps it is an example of the

newly discovered shared motif.

The w

ij

are used in reestimating the letter frequencies. Instead of summing

the o�set probabilities z

ij

, the weighted o�set probabilities w

ij

� z

ij

are summed.

To understand how the weighting scheme e�ectively erases previously discovered

motifs, suppose that MEME has discovered one motif and is looking for the second.

Suppose position j in sequence i was the start of an appearance of the �rst motif

found. Then the new weights w

ij

through w

i;(j+W�1)

will all be less than 1 � z

ij

.

Hence they cannot contribute much to the reestimation of � and are e�ectively

erased. Notice that if a position only matches the discovered motif poorly, then z

ij

will be low, so the weight for that position will remain fairly high. The degree to

which a position is erased is proportional to the certainty (z

ij

) that it is part of a

previously discovered motif. This makes MEME less sensitive to chance similarities

than if a match threshold were set and all positions with z

ij

value above that

threshold were completely erased.

3. Experimental results

This section describes experiments usingMEME that were conducted on two datasets.

In all cases, the model used byMEME was the n-per model. The �rst dataset, which
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will be referred to as the CRP/LexA dataset, comprises DNA fragments which

contain binding sites for the CRP and LexA regulatory proteins. The CRP/LexA

dataset consists of all of the samples in the CRP dataset plus all the samples in the

LexA dataset, which are described below. The second dataset, which will be re-

ferred to as the promoter dataset, contains samples of prokaryotic promoter regions.

It is also described in detail below. An overview of the contents of the datasets is

given in Table 1.

The CRP dataset is taken from Stormo and Hartzell [19] who, in turn, derived it

from Berg and von Hippel [3] and de Crombrugghe et al. [6]. It contains 18 DNA

fragments from E. coli each believed to contain one or more CRP binding sites.

The dataset contains 18 CRP binding sites which had been veri�ed by DNase pro-

tection experiments when the dataset was compiled. Some of the fragments contain

putative CRP binding sites which have been determined by sequence similarity to

known binding sites only. Each fragment in the dataset contains 105 bases and the

fragments are not aligned with each other in any particular way.

The LexA dataset is taken from Table I in [11]. It contains 16 DNA fragments

each believed to contain one or more LexA binding sites. The dataset contains

11 LexA binding sites which had been veri�ed by DNase protection experiments

when the dataset was compiled. An additional 11 putative LexA binding sites,

as determined by sequence similarity to known binding sites, are also present in

the dataset. Most of the fragments contain 100 bases preceding and 99 bases

following the transcription start position of a gene. Three of the fragments are

shorter because 200 bases 
anking the start position of the gene were not available.

One of the samples in the LexA dataset overlaps a sample in the CRP dataset. The

overlap includes the known CRP site.

The promoter dataset is taken from Cardon and Stormo [5]. It contains 231

E. coli DNA fragments each believed to contain promoter regions. This dataset

was originally compiled by Harley and Reynolds [9], and contained 288 fragments,

but Cardon and Stormo omitted a number of fragments that were from highly

redundant sequences or known to be mutant promoters. All the fragments roughly

comprise positions �50 to +10 with respect to the start of transcription.

8

Previous

work such as that of Harley and Reynolds [9] has shown that the promoter motif

seems to consist of two highly conserved sub-motifs of width 6 each, separated by a

variable-length spacer. The spacer is usually 15, 16, 17 or 18 bases long. Although

MEME cannot directly model such a variable-length motif, it can indirectly by

discovering the two highly conserved ends of such motifs.

3.1. MEME can discover two di�erent binding site motifs

MEME was run for 5 passes on the CRP/LexA dataset withW = 20, NSITES = 17.

The value for W was chosen based on prior knowledge from the literature that this

is the approximate size of both the CRP and LexA binding sites in DNA base-pairs.

9

The value for NSITES was chosen arbitrarily as half the number of sequences in

the dataset, because there are roughly that many footprinted sites of each type in
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Table 1. Overview of the contents of the datasets.

dataset samples average length of samples proven CRP sites proven LexA sites

CRP 18 105 18 0

LexA 16 192 1 11

CRP/LexA 34 150 19 11

promoter 231 58 NA NA

the dataset. As mentioned previously, the exact value of NSITES is not critical for

MEME to discover the motifs. The �rst pass of MEME yielded an excellent model

for the LexA binding site. The second pass produced a model for the CRP binding

site. Subsequent passes produced models of unknown signi�cance. The results of

MEME on CRP/LexA are summarized in Table 2.

Table 2. The models found by each pass of MEME on the CRP/LexA dataset can be

visually summarized by the consensus sequence derived from the � matrix by choosing the

letter with the highest probability. The values of information content and log(likelihood )

give a qualitative idea of the statistical signi�cance of the model. Higher values imply the

model is more signi�cant. The models found for LexA and CRP on passes 1 and 2 of

MEME have considerably higher log(likelihood ) and information content than the models

found on later passes. Note that W = 20 and NSITES = 17.

pass starting subsequence �nal consensus I

model

log(likelihood)

1 TACTGTATATAAAACCAGTT TACTGTATATATATACAGTA 13.206 -435.174

2 TTATTTGCACGGCGTCACAC TTTTTTGATCGGTTTCACAC 9.087 -515.837

3 ATTATTATGTTGTTTATCAA TTTATTTTGATGTTTATCAA 6.527 -539.083

4 TGCGTAAGGAGAAAATACCG TGCGTAAGAAGTTAATACTG 7.912 -531.419

5 CAAATCTTGACATGCCATTT CAAATATGGAAAGGCCATTT 8.027 -533.662

The model produced by the �rst pass of MEME on CRP/LexA identi�ed and

characterized the LexA binding site extremely well. The quality of the model can

be judged partly from the degree to which it correctly identi�es the known LexA

binding sites in the dataset. One way of using the model produced by MEME is

to examine the values of z

ij

to see which positions in which samples in the dataset

are given high probabilities of being the start of a motif. MEME prints the four

highest values of z

ij

for each sample in the dataset after each pass. Table 3 shows

the values of z

ij

after pass 1 of MEME for the known LexA binding sites. It can be

easily seen that the model found in the �rst pass characterizes the LexA binding

site. Furthermore, all other values of z

ij

were below 0.17, so the model appears to

be very speci�c for the LexA binding site.

The consensus sequence for the model discovered in pass 1 of MEME on the

CRP/LexA dataset also agrees exceedingly well with the LexA binding site. MEME

prints the consensus (i.e., the most probable letter for each position in the motif as

determined from �) after each pass. The consensus after pass 1 was
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TACTGTATATATATACAGTA, which matches the consensus reported by [11] and is a

perfect DNA palindrome.

Table 3. Values of z

ij

for the model found by MEME in pass 1 on the

CRP/LexA dataset at the positions of the known LexA sites. Virtually

all of the known sites have very high values of z

ij

compared to the rest of

the positions in the samples. The table shows the positions of the known

sites (site 1, site 2 and site 3) and the values of z

ij

of the model at those

positions. All other positions have values of z

ij

below 0.17. Although the

site at position 112 in the colicin E1 sequence has z

ij

value only 0.05, this

is one of the four highest z

ij

values for this sequence. No proven sites are

known for himA and uvrC and z

ij

for all positions in those samples was

very low, less than 0:0001.

sample site 1 z

ij

site 2 z

ij

site 3 z

ij

cloacin DF13 97

a

0.998684

colicin E1 97 0.948441 112 0.051543

colicin Ia 99

a

0.998709

colicin Ib 99

a

0.990472

recA 71 0.999987

recN 71 0.999988 93 0.865704 111

a

0.134281

sulA 85

a

0.999990

umuDC 91 0.999931

uvrA 60 0.987786

uvrB 71 0.999972

uvrD 102 0.998539

colicin A 34

a

0.683563 48

a

0.314723

lexA 76 0.999982 55 0.999933

mucAB 49

a

0.999978

himA

uvrC

a

Indicates site known only by sequence similarity to known sites.

Another way of seeing how well the model that was learned during pass 1 of

MEME characterizes the LexA binding sites is to plot the information content score

of each subsequence of the input data. Figure 1 shows the information content

scores of both the CRP and LexA samples under the �rst pass model. (All scores

below zero have been set to zero in the �gure to make it easier to interpret.) It can

easily be seen that the model gives the known binding sites high scores while most

other subsequences receive low scores.

On the next pass, MEME discovers the CRP motif. The consensus sequence it

reports for pass 2 is TTTTTTGATCGGTTTCACAC, which agrees well with the consensus

found with one-per model and reported in [14]. More signi�cantly, the model char-

acterizes the CRP motif well, judging from the values of z

ij

for the various positions

in the samples in the dataset. Table 4 shows the values of z

ij

found during pass 2

on the CRP/LexA dataset. According to [14], the CRP dataset contains 24 known

CRP binding sites, 18 of which had been veri�ed by protection experiments. The

value of z

ij

for eight of these is above 0.99 in the model, while eleven have z

ij

values

above 0.1. It turns out that three of the samples from the LexA dataset also contain
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Figure 1. The information content score of each subsequence of the CRP/LexA dataset using the

speci�city matrix found on pass 1 of MEME. The CRP samples are the short curves at the top,

while the LexA samples are the long curves at the bottom. Vertical scale is such that highest

peak is 24.3 bits. All values below zero have been set to zero.
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CRP binding sites. The sample labeled colicin E1 in the LexA dataset is actually

from the same sequence and overlaps the sample labeled cole 1 in the CRP dataset.

The overlap contains the CRP motif. LexA samples colicin Ia and colicin Ib also

appear to contain CRP sites which are virtually identical to the colicin E1/cole 1

CRP site. For these sites z

ij

is over 0:999, which is extremely high. Because of the

overrepresentation of this particular \version" of the CRP binding site, the model

learned during pass 2 seems to be biased towards representing the version of the

CRP binding site present in the colicin genes. This may explain why the model

does not �t all of the CRP sites equally well.

Table 4. Values of z

ij

for the model found by MEME in pass 2 on the

CRP/LexA dataset at the positions of the known CRP sites. Of 24

known CRP sites, eight have very high values of z

ij

, and twelve more

(those not stated as below some bound) have values of z

ij

among the

top four z

ij

values for the given sequence. The three last three sites

(labeled b, c, and d) are actually from the LexA dataset, not the CRP

dataset. The sequence named colicin E1 actually is from the same

gene as cole 1 and overlaps it in the CRP site region. The site in

colicin Ia may not have been reported previously, and the colicin Ib

site was previously reported as being a LexA site.

sample site 1 z

ij

site 2 z

ij

cole1 17 < :0004 61 0.999185

ecoarabob 17 < :0003 55 0.999051

ecobglr1 76 0.028134

ecocrp 63 0.998985

ecocya 50 0.006001

ecodeop 7

a

0.999845 60 0.018088

ecogale 42 0.497545

ecoilvbpr 39

a

< :0015

ecolac 9 0.996939 80 0.002302

ecomale 14

a

0.997871

ecomalk 29

a

0.00129 61 0.035443

ecomalt 41 0.014568

ecoompa 48 0.177722

ecotnaa 71

a

0.999222

ecouxu1 17 0.998583

pbr-p4 53 0.004511

trn9cat 1 < :0001 84 0.000148

tdc 78

a

0.506702

colicin E1 27

b

0.999186

colicin Ia 13

c

0.999692

colicin Ib 13

d

0.999333

a

Indicates site known only by sequence similarity to known sites.

b

This LexA dataset sample overlaps CRP sample cole 1.

c

This site may not have been reported previously.

d

This apparent CRP site may have been confused with a LexA site

by Varley and Boulnois [21] and Hertz et al. [11].

Figure 2 shows the information content scores of the CRP/LexA dataset com-

puted with the speci�city matrix learned during pass 2 of MEME. Although the
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Figure 2. The information content score of each subsequence of the CRP/LexA dataset using the

speci�city matrix found on pass 2 of MEME. The CRP samples are the short curves at the top.

The strong match of the model to three colicin samples in the LexA dataset is seen in the second,

third, and fourth long curves. The vertical scale is such that highest peak is 18.92 bits. All values

below zero have been set to zero.

model is not as well de�ned as that of pass 1, it clearly matches the known CRP

sites to a large degree.

3.2. MEME can discover two parts of a single binding site

MEME was run for 5 passes on the promoter dataset with W = 6, NSITES =

231. The value for W was chosen based on prior knowledge derived from the

literature that this is the approximate size of both the �10 and �35 regions of

E. coli promoters. The value of NSITES was chosen based on the assumption that

each sample in the dataset contains a promoter. The �rst pass of MEME yielded

a model whose consensus was TATAAT, which is the known �10 region consensus.

The second pass produced a model whose consensus was TTTACA, which is very
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close to the conventional �35 region consensus, TTGACA. Further passes produced

models of unknown signi�cance. The results of MEME on the promoter dataset are

summarized in Table 5.

Table 5. The models found on each pass of MEME on the promoter

dataset are summarized as consensus sequences. The �10 and �35 region

models were found on the �rst two passes of MEME and have much higher

log(likelihood ) and information content than the other models found.

pass starting subsequence �nal consensus I

model

log(likelihood)

1 TAAAAT TATAAT 4.627 -1409.458

2 TTTTTT TTTACA 5.388 -1320.208

3 TGAAAA TGAAAA 4.210 -1657.897

4 TATACT TATACT 4.191 -1689.300

5 TTGCGC TTGCGC 4.727 -1709.490

The models learned on the �rst two passes of MEME on the promoter dataset

are applied to the �rst thirty samples in the dataset and the information content

score of each subsequence in the dataset is plotted in Figures 3 and 4. The base

corresponding to the start of transcription of each sample is at position 50 on the

horizontal axis of each plot. A column of peaks at position 37 in Figure 3 shows

that the model identi�es the �10 consensus region of the promoters. A column of

peaks at position 15 of Figure 4 con�rms that the second model identi�es the �35

region of the promoters, even though its consensus sequence is slightly di�erent

from the generally accepted one.

4. Robustness of the MEME algorithm

The CRP/LexA dataset and the promoter dataset were also used to test the useful-

ness of the various separate ideas entering into the design of the MEME algorithm,

and to evaluate the sensitivity of the algorithm to the particular values chosen

for several parameters. Overall, the algorithm appears to be gratifyingly robust.

Except where noted, MEME was run using the n-per model.

4.1. Subsequence-derived starting points work well with EM

The idea of running EM for only one iteration from starting points derived from each

possible subsequence of the input dataset was tested. As the following experiments

demonstrate, this method appears to work well at predicting good starting points

from which to run EM to convergence. The experiments consisted of running EM

for one iteration from each possible subsequence-derived starting point on the two

datasets. The likelihood of each of the models thus obtained was plotted against

the starting position of the subsequence from which the starting point was derived.

Thus, one point was plotted for each position in each sample in the dataset. It
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Figure 3. The information content score of each subsequence of the �rst 30 sequences of the

promoter dataset using the speci�city matrix of pass 1 of MEME. The concept learned on pass 1

of MEME on the promoter dataset locates the �10 region of the promoters. The vertical scale is

such that highest peak is 7.21 bits. All values below zero have been set to zero.
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Figure 4. The information content score of each subsequence of the �rst 30 sequences of the

promoter dataset using the speci�city matrix of pass 2 of MEME. The concept learned on pass 2

of MEME on the promoter dataset locates the �35 region of the promoters. The vertical scale is

such that highest peak is 7.74 bits. All values below zero have been set to zero.
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Figure 5. log(likelihood ) after one iteration of EM from starting points derived from each possible

subsequence in the CRP/LexA dataset. EM appears to converge quickly from starting points

derived from subsequences at or near the LexA binding sites. The short curves at the top are the

CRP samples, while the longer curves are the LexA samples. The vertical axis for each curve is

scaled such that the highest peaks are at -481.6 and the lowest valleys are at -642.5.

was hoped that some starting points would yield models with signi�cantly higher

likelihood even after just one iteration. Then EM could be run to convergence from

those starting points and the most likely model thus obtained could be selected as

the output of MEME.

In the �rst experiment, the combined CRP/LexA dataset was used. The MEME

algorithm was run with only one iteration of EM from each possible starting point.

When the log(likelihood) values of the derived models are plotted against the posi-

tion on the sequence from which the starting point was derived, it can be seen in

Figure 5 that large peaks in the likelihood function were occurring in most of the

LexA samples. (If the information content scores were plotted, the graph would

have a very similar appearance. Since EM maximizes the likelihood of the model

and not its information content, log likelihood was chosen as the criterion for choos-

ing starting points. Information content could also be used, with similar results.)
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Figure 6. EM �nds models of high likelihoodwhen run for one iteration on the CRP/LexA dataset

from starting points derived from subsequences of sample recN. The starting points correspond

well with the known LexA binding sites, whose left ends are indicated on the horizontal axis.

Further investigation showed that the peaks tended to occur at the positions of

the known LexA binding sites. Figure 6 shows an expanded view of the curve for the

sample from recN. The recN sample contains three LexA binding sites whose left

ends are marked on the horizontal axis of the �gure. The peaks in the curve occur

at or near these positions. The same phenomenon was observed for the other LexA

samples, except for himA and uvrC which previous researchers [11] have noted do

not match the LexA consensus

4.2. \Erasing" one motif is necessary to �nd another

On closer inspection of the plots, peaks could also be seen in the curves from the

CRP samples at positions corresponding to known CRP binding sites. Figure 7

shows the expanded view for the CRP sample tnaa. As can be seen in the �gure,

it is di�cult to distinguish the peaks generated by starting points derived from
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Figure 7. The log(likelihood ) of the model after 1 iteration of EM in MEME varies strongly with

the starting point. The plot shows the log(likelihood ) of the model after one iteration of EM on

dataset CRP/LexA run from the starting points generated from the subsequences in the sample

labeled \tnaa".

subsequences at the CRP binding sites from other peaks which do not correspond

to any known sites. It appears that the other peaks are due to EM starting to

converge to a model related to the LexA motif. Even a bad model of the highly

conserved LexA motifs may have log(likelihood) similar to the best model of the

CRP binding sites, due to the fact that the LexA binding sites are muchmore highly

conserved than the CRP binding sites. The highest peaks produced by subsequences

from the CRP samples were much lower than the highest peaks produced by the

LexA samples. Also, no CRP sample produced a peak at a position corresponding

to a CRP binding site that was clearly higher than all peaks produced from other

subsequences of the CRP samples. This shows the necessity of somehow eliminating

the LexA binding sites from the data in order to be able to discover the best starting

points from which to run EM to learn a model for the CRP binding sites.
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4.3. The expected number of motif appearances is not critical

If the choice of NSITES were critical to the ability of MEME using the n-per model

to �nd one or more distinct motifs or parts of motifs in a dataset, it would be

necessary to know in advance how many appearances of each motif were in the

dataset. This would restrict the usefulness of MEME in discovering completely

new motifs from sequence data alone. Fortunately, MEME discovers models for

motifs with NSITES set to a wide range of values. So running MEME with just a

few values of NSITES will probably su�ce to �nd most motifs (if any) which are

represented in a dataset.

MEME was run on the CRP/LexA dataset with various values of NSITES and all

other parameters �xed. The models found byMEME on each pass were examined to

see if they �t the known consensus sequences for LexA and CRP. Table 6 shows the

passes ofMEME on which models for LexA and CRP motifs were discovered and the

information content and log(likelihood) of the models. MEME always �nds a model

for the LexA motif on the �rst pass. With low NSITES , it �nds LexA more than

once, due presumably to the fact the LexA binding sites do not get completely

erased. (MEME e�ectively erases at most NSITES occurrences of a motif after

each pass, so if NSITES = 5 and there are �fteen LexA binding sites, there are still

enough left for pass 2 to �nd another model of the LexA motif.) MEME found a

model of the CRP motif within four passes for all values of NSITES tried except

for NSITES = 5. Usually, CRP was the second model found. While the values

of information content and log(likelihood) of the LexA models were always much

higher than those of all other models found by MEME, this was not always true for

the CRP models. Only when NSITES was close to the actual number of known

CRP binding sites in the dataset was the information content and log(likelihood)

of the CRP model much higher than for the other models (of unknown biological

signi�cance) found by MEME.

4.4. The n-per model is less sensitive to noise than the one-per model

The removal of the one-motif-appearance-per-sequence assumption was intended,

among other things, to make the n-per model less sensitive to noise than one-per

model. For example, if it is suspected that one or more of the sequences in a

dataset is noise (i.e., does not contain an appearance of a motif), NSITES can be

set to a value which is less than than the number of sequences in the dataset. If

MEME correctly locates just the appearances of the motif, the model found will

have higher log(likelihood) than that found by using the one-per model which is

forced to choose an appearance in every sequence in the dataset. To test this

assumption, MEME was run with both the one-per model and the n-per model on

datasets which contained varying numbers of randomly generated sequences (with

NSITES set to the same, �xed value each time). The random sequences had the

same letter frequencies as the dataset as a whole, and they were the same length.

The datasets used were CRP and LexA with various numbers of random sequences
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Table 6. MEME �nds models of the LexA and CRP binding sites when NSITES

has values between 10 and 35. When NSITES is above 10, LexA and CRP are

usually found on the �rst two passes. Only with NSITES = 5 did MEME fail to

�nd CRP on any of the �rst �ve passes.

NSITES pass consensus I

model

log(likelihood) motif

5 1 ATACTGTATATAAAAACAGT 8.151 -154.337 LexA

2 AATACTGTATATGTATCCAG 7.667 -158.139 LexA

3 TGTGAAAGACTGTTTTTTTG 6.968 -161.024 ?

4 ACTATCATCAAATCTTGACA 5.406 -169.906 ?

5 GATGCGTAAGCAGTTAATTC 6.280 -167.133 ?

10 1 TACTGTATATAAAAACAGTA 11.740 -271.797 LexA

2 TAATACTGTATATGTATCCA 7.318 -319.596 LexA

3 GTGAAAGACTATTTTTTTGA 8.460 -303.710 ?

4 TTTCTGAACGGTATCACAGC 8.145 -317.833 CRP

5 AAGCAGATTATGCTGTTGAT 6.895 -318.830 ?

15 1 TACTGTATATATATACAGTT 13.513 -379.939 LexA

2 TTTTTTGAACGATTTCACAT 9.198 -454.496 CRP

3 TTTATTTTGATGTTTATCAA 6.620 -475.009 ?

4 TGCGTAAGAAGTTAATACTG 7.947 -471.933 ?

5 CAAAAATGGAAAGCCATTTT 7.292 -481.090 ?

20 1 AATACTGTATATATATACAG 12.883 -520.728 LexA

2 TTTTTGAACGGTTTAAAATT 8.237 -603.571 CRP

3 ATTATTGTGATGTTGATTAT 7.075 -634.142 ?

4 TGCGGAAGCAGATAATACTG 8.042 -627.719 ?

5 ATGAAAGTCTACATTTTTGT 7.042 -638.444 ?

25 1 TACTGTATATATATACAGTA 12.161 -669.214 LexA

2 TTTATTTTGATGTTTTTCAA 7.797 -760.468 ?

3 TTTCTGAAAGGTATAACATC 7.739 -786.765 CRP

4 CAAAAATGGAAAAGCAATTT 7.676 -789.667 ?

5 TGCGTAAGAAGATAATACTG 7.253 -803.956 ?

30 1 TACTGTATATATATACAGTA 11.087 -828.649 LexA

2 TTTTTGTGATCTGTATCACA 7.842 -929.059 CRP

3 CAAAAATGGATAACCATTTT 7.529 -952.776 ?

4 TATGCGTAAGCAGTAAAATT 7.401 -953.792 ?

5 TGAGGATGATAACGAATATC 6.820 -975.923 ?

35 1 TACTGTATATATATACAGTA 10.300 -995.800 LexA

2 ATTATTGTGATGTTGATCAT 7.247 -1092.196 CRP

3 CAAAAATGGAAAACCATTTT 7.425 -1112.207 ?

4 TTTCTGACCCAGTTCACATT 7.717 -1104.486 CRP

5 ATGCGTAAGCAATTTATTCA 6.826 -1135.477 ?

added. In both cases, MEME with the n-per model learned the correct concept on
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the �rst pass from datasets with more random sequences than the MEME using the

one-per model could tolerate. MEME with the n-per model learned a model for

the CRP binding site with 30 random sequences added to the 18 sequences of the

CRP dataset. (It learned the model even with 50 random sequences, although then

it learned it on the second pass.) MEME with the one-per model was not able to

learn a LexA binding site model with more than 60 random samples added to the

dataset, and it learned an \o�-center" model when more than 20 random samples

were in the dataset. MEME with the n-per model, however, learned the correct

LexA model even with 80 random samples added to the dataset.

Figure 8 shows the information content of the CRP and LexA models learned by

MEME with the n-per model and the one-per model on the �rst pass from datasets

with various numbers of random sequences added. The CRP models learned with

the n-per model also consistently had higher information content than those learned

with the one-per model. This was true even for the model learned with no ran-

dom sequences added to the dataset. Presumably, this is indicative of the fact

that the n-per model is taking advantage of the sequences with multiple appear-

ances of the CRP site. The models learned with the n-per model for LexA were

extremely robust to the number of random samples added to the dataset. There

was almost no decrease in the information content no matter how many random

samples were present. The one-per model, on the other hand, found models with

lower information content when more random samples were in the dataset.

It is clear from Figure 8 that MEME using the n-per model will �nd a set of highly

conserved binding sites even in datasets where the vast majority of the sequences

do not contain it. The one-per model su�ers from the fact that it must always

average in one supposed motif appearance from each sample. MEME with the n-

per model is thus able to deal with a particular type of noise|samples containing

no motif appearances|if a good estimate of the true number of motif appearances

(NSITES ) is available.

5. Discussion

The MEME algorithm demonstrates the power of several new ideas. Subsequence-

derived starting points have been shown to be a powerful way of selecting starting

points for EM, and may be useful with other methods as well. Since EM tends to

converge quickly from good starting points,MEME saves a great deal of time by only

running EM for one iteration from each starting point and greedily selecting the

best starting point based on the likelihood of the learned model. The modi�cations

to the EM algorithmwhich allowMEME to drop the assumption that each sequence

contains exactly one appearance of a motif and �t the n-per model to a dataset

have been shown to give MEME the ability to discover motifs in datasets which

contain many sequences which do not contain the motif. Finally, the probabilistic

weighting scheme used byMEME to erase appearances of the motif found after each

pass was demonstrated to work well at �nding multiple di�erent motifs as well as

motifs with multiple parts.
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Figure 8. The information content of the LexA and CRP models found on the �rst pass of MEME

with the n-per model and the one-per model, run separately on the CRP and LexA datasets with

di�erent numbers of random examples added. The comparative advantage of the n-per model is

clear. Especially with motifs whose occurrences are highly conserved, the n-per model �nds very

good models even when many sequences not containing the motif are present. MEME was run

with W = 20 and NPASSES = 1. NSITES was set to 15 for the n-per model.
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The MEME algorithm should prove useful in analyzing biological sequence data.

It is a robust tool for discovering new motifs from sequence data alone when little

or no prior knowledge is available. When MEME is used to discover motifs from

sequence data alone, it is performing unsupervised learning. E�ectively, MEME

�nds clusters of similar subsequences in a set of sequences. Some measure of the

unlikeliness of a cluster, information content of the model for example, can then be

used to decide if other methods (i.e., wetlab experimentation) should be applied to

verify that the sites which match the model actually are biologically related. Plots

of information content scores of various positions of the sequences in the dataset

such as in Figure 1 and Figure 2 can also be helpful to a biologist for discovering

which clusters are signi�cant and which may be statistical artifacts.

When MEME is used with a dataset of sequences each of which is known to

contain a motif, such as the promoter dataset, it is performing supervised learning.

Because the models MEME learns do not allow a motif to have variable length (i.e.,

no insertions or deletions are allowed), MEME is limited to learning a restricted

class of motifs. It may be possible to use the multiple models learned by MEME on

passes through the dataset as features for another learning algorithm. For example,

a decision tree learner such as ID3 [15] or CART [4] could use the models learned by

MEME on the promoter dataset as features to learn a classi�cation rule for E. coli

promoters. Since the �rst two passes of MEME found models for the �10 and

�35 regions of the promoter, this approach should have a high chance of success.

Another promising idea is to use the short motifs learned by MEME to construct

starting points for hidden Markov models.

The innovations added to the EM algorithm in MEME can also be used with hid-

den Markov models (HMMs) [10]. The idea of using subsequence-derived starting

points may be adaptable for use with HMMs. The method used by MEME for

probabilistically erasing sites after each pass would certainly be easy to add to the

standard forward/backward HMM learning algorithm. It should also be possible

to design a HMM which, like the n-per model, eliminates the assumption of one

motif per sequence. It may also be possible to adapt MEME innovations to learning

stochastic context free grammars for biopolymer concepts [16].

MEME discovered CRP sites in the colicin Ia and colicin Ib samples. The site

in colicin Ib was mentioned in [21] as being either a LexA site or possibly a CRP

site. [11] appear to have classi�ed it as a LexA site. The results reported here

indicate that the site is probably a CRP binding site, not a LexA binding site: the

information content score for the site under the CRP model was around 16, whereas

it was less than 1 under the LexA model. No mention of the CRP site found in

colicin Ia was found in the literature.
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Appendix

Reestimating � and z for the one-per and n-per models.

During each iteration of EM, the values of the letter probabilities of the motif model

�, and of the o�set probabilities z, must be reestimated. With the one-per model,

the z values are reestimated using Bayes' rule from the current estimate of �. For

both models, given the values of z, � is estimated as the expected values of the

letter frequencies. How this is done is described below.

To describe the EM algorithm for the two model types formally, the following

de�nitions are useful. Let N be the number of sequences, W be the length of the

motif, and L be the length of each sequence (assume all are of the same length).

De�ne z

(q)

ij

as the estimate after q iterations of EM of the probability that the site

begins at position j in sequence i given the model and the data. Let �

(q)

lk

be the

estimate after q iterations of EM of the probability of letter l appearing in position

k of the motif. Let S

i

be the ith sequence in the dataset and S

ij

be the letter

appearing in position j of that sequence. De�ne an indicator variable Y

ij

that

equals 1 if the site starts at position j in sequence i, and 0 otherwise.

We ignore the probability of the letters outside of the motif, and only consider the

probability of the letters in the motif. For both model types, EM must calculate

the probability of sequence S

i

given the motif start and the model. This can be

written as

P (S

i

jY

ij

= 1; �

(q)

) =

W

Y

k=1

�

(q)

l

k

;k

where the sequence S

i

has letter l

k

at position j + k � 1, i.e., S

i;j+k�1

= l

k

. This

forms the basis for calculating z

(q)

.

With the one-per model, Bayes' rule is used to estimate z

(q)

from P (S

i

jY

ij

=

1; �

(q)

). Bayes' rule states that

P (AjB) =

P (BjA)P (A)

P (B)

so

z

(q)

ij

= P (Y

ij

= 1 j �

(q)

; S

i

) =

P (S

i

jY

ij

= 1; �

(q)

)P

0

(Y

ij

= 1)

P

L�W+1

k=1

P (S

i

jY

ik

= 1; �

(q)

)P

0

(Y

ik

= 1)

where P

0

(Y

ij

= 1) is the prior probability that the motif begins at position j in

sequence i. P

0

is not estimated and is assumed to be uniform,

P

0

(Y

ij

= 1) = 1=(L�W + 1); k = 1; : : : ; (L�W + 1)
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so the above simpli�es to

z

(q)

ij

=

P (S

i

jY

ij

= 1; �

(q)

)

P

L�W+1

k=1

P (S

i

jY

ik

= 1; �

(q)

)

The probability is only estimated for sites which are completely within a sequence,

so j is assumed to be within the range 1; : : : ; L�W + 1 in all calculations of z

(q)

.

Notice that the above formula for z

(q)

ensures that it sums to 1.0 for each sequence.

This enforces the implicit assumption of the one-per model that each sequence

contains exactly one appearance of the shared motif. For the n-per model, our

modi�ed EM algorithm normalizes z

(q)

so that the sum over all positions in all

sequences is NSITES . This can be written formally as

z

(q)

ij

= NSITES

P (S

i

jY

ij

= 1; �

(q)

)

P

N

n=1

P

L�W+1

k=1

P (S

n

jY

ik

= 1; �

(q)

)

Once z has been calculated as above for the n-per model, it undergoes two nor-

malizations to enforce the constraints that each z

(q)

ij

is less than or equal to 1.0,

and that the sum of the z

(q)

ij

in any window of length W is less than or equal to

1.0. These constraints can be written formally as

z

(q)

ij

� 1:0; for 1 � i � N and 1 � j � L

k+W�1

X

j=k

z

(q)

ij

� 1:0; for 1 � i � N and 1 � k � L�W + 1:

There are many di�erent ways in which the constraints could be enforced. A par-

ticular manner was chosen which reduces computational e�ort. No claim is made

that this is the only or best choice. The two constraints are enforced separately by

applying the following two algorithms in order. Figure A presents the �rst algo-

rithm, which makes one or more passes through the o�set probabilities normalizing

them to sum to NSITES and \squashing" (setting to 1.0) any that would exceed

1.0 after normalization. After each pass, if any o�set probabilities get squashed,

another pass is made to raise the value of o�set probabilities that have never been

squashed so that the NSITES total is enforced. In practice, usually few passes are

needed. The second algorithm, given in Figure , is run next to enforce the constraint

that no window of W positions has o�set probabilities that sum to more than 1.0.

This is achieved by dividing each sequence into adjacent windows of length W and

normalizing within each window separately. Windows are then shifted one to the

right and the process is repeated. This is done for all W possible shifts of the win-

dows, which guarantees that no window of width W will have o�set probabilities

summing to greater than 1.0, but may reduce the total sum below NSITES . The

squashing algorithm could be repeated to correct this but this is not done in the

interest of saving computation time.
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1. SQUASH ( z (unnormalized; z

(q)

ij

= P (S

i

jY

ij

= 1; �

(q)

)),

2. total (the total of z

(q)

for all sequences and positions),

3. NSITES (the number of appearances of the motif expected),

4. L (length of the sequences),

5. N (number of sequences)) f

6. renormalize = true

7. while (renormalize) f

8. renormalize = false

9. normalize = total=NSITES

10. total = 0

11. for i = 1 to N f

12. for j = 1 to L�W + 1 f

13. p = z

ij

14. if (p < 1) f

15. p = p=normalize

16. if (p > 1) f

17. p = 1

18. NSITES = NSITES � 1

19. renormalize = true

20. g

21. g

22. z

ij

= p

23. if (p < 1) total = total + p

24. g

25. g

26. g

27. return

28. g

Figure A.1. SQUASH: Normalize the z

ij

to sum to NSITES while constraining each to be between

0 and 1.
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1. SMOOTH ( z

(q)

(normalized o�set probabilities),

2. L (length of the sequences),

3. N (number of sequences) ) f

4. for i = 1 to N f

5. for offset = 1 to W f

6. for j = offset to L� 2 �W by W f

7. localp = 0

8. for k = 1 to W f

9. localp = localp + z

(q)

i;j+k

10. g

11. if (localp > 1) f

12. for k = 1 to W f

13. z

(q)

i;j+k

= z

(q)

i;j+k

=localp

14. g

15. g

16. g

17. g

18. g

19. return

20. g

Figure A.2. SMOOTH: Constrain the sum of o�set probabilities in any window of width W to

sum to no more than 1.0.
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Notes

1. The nameMEME has several explanations. First, it is an acronym for multiple EM for motif

elicitation. Second, as an English word \meme" means a theme or motif whose propagation

through cultural evolution is similar to the propagation of a gene in biological evolution. Third,

MEME is a greedy algorithm|a \me! me!" algorithm.

2. A related measure used occasionally in this paper, I

model

is the information content of the

model [17]. It is the sum of the information content of each position in the motif, I

j

, over all

the positions in the motif. The information content of a position in the motif is de�ned as

I

j

=

X

l2L

�

lj

log(

�

lj

�

l

);

where �

l

is the overall frequency of letter l in the dataset. The information content of the

model is thus de�ned as

I

model

=

W

X

j=1

I

j

:

The relationship between I

model

and log(likelihood ) is discussed by Stormo [18] and Bailey [1].

3. Promoter sequences are DNA sequences that precede genes and are necessary for the tran-

scription of DNA to messenger RNA.

4. The consensus sequence of a motif is the sequence consisting of the most commonly occurring

letter in each position of the appearances of the motif. Ties are resolved arbitrarily.

5. See [17] for a discussion of matrix-based scoring of sequences.

6. Using all possible subsequences of the �rst dataset sequence is suggested in [19]. The MEME

approach of using all subsequences of all sequences is preferable since it makes the order in

which sequences are given unimportant. Not using just the �rst sample also eliminates the

problem of the �rst sample happening to contain no motif occurrence.

7. The idea of a \conservedmotif" comes from the biological idea that the occurrences of motifs

are often related to each other by evolution. A well conserved motif is one whose appearances

are all almost identical to each other because little mutation has occurred in them since they

separated from each other or from a common ancestor.

8. Biologists often number the \bases" (i.e., letters) in a DNA sequence with base 1 being the

base where transcription from DNA to messenger RNA begins. Bases preceding the start of

transcription are given negative numbers, starting at -1, with 0 not used.)

9. If the best value of W is not known in advance,MEME can be run repeatedly with di�erent

values. [14] addresses the question of choosing the best value of W . Each run ofMEME uses

a single value of W for all motifs found.
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