THE VALUE OF PRIOR KNOWLEDGE IN
DISCOVERING MOTIFS WITH MEME

TIMOTHY L. BAILEY TBAILEY@QCS.UCSD.EDU
Department of Computer Science and Engineering, University of California, San
Diego, La Jolla, California 92093-0114

CHARLES ELKAN ELKAN@CS.UCSD.EDU
Department of Computer Science and Engineering, University of California, San
Diego, La Jolla, California 92093-0114

Abstract

MEME is a tool for discovering motifs in sets of protein or DNA sequences.
This paper describes several extensions to MEME which increase its ability
to find motifs in a totally unsupervised fashion, but which also allow it to
benefit when prior knowledge is available. When no background knowledge is
asserted, MEME obtains increased robustness from a method for determining
motif widths automatically, and from probabilistic models that allow motifs to
be absent in some input sequences. On the other hand, MEME can exploit
prior knowledge about a motif being present in all input sequences, about the
length of a motif and whether it is a palindrome, and (using Dirichlet mixtures)
about expected patterns in individual motif positions. Extensive experiments
are reported which support the claim that MEME benefits from, but does not
require, background knowledge. The experiments use seven previously studied
DNA and protein sequence families and 75 of the protein families documented
in the Prosite database of sites and patterns, Release 11.1.

Keywords: motif discovery, sequence databases, mixture models, expectation max-
imization, Dirichlet priors

Acknowledgements: Timothy Bailey is supported by NITH Genome Analysis Pre-
Doctoral Training Grant No. HG00005. The authors are grateful to Michael Grib-
skov for many useful conversations during the course of the work reported here, and
to other colleagues for advice and encouragement.

1 Introduction

MEME is an unsupervised learning algorithm for discovering motifs in sets of protein
or DNA sequences. This paper describes the third version of MEME. Earlier versions
were described previously [Bailey and Elkan, 1994], [Bailey and Elkan, 1995a]. The
MEME extensions on which this paper focuses are methods of incorporating back-
ground knowledge, or coping with its lack. For incorporating background knowledge,
these innovations include automatic detection of inverse-complement palindromes in
DNA sequence datasets, and using Dirichlet mixture priors with protein sequence
datasets. Dirichlet mixture priors bring information about which amino acids share
common properties and thus are likely to be interchangeable in a given position in
a protein motif. This paper also describes a new type of sequence model and a new
heuristic for automatically determining the width of a motif which remove the need
for the user to provide two types of information. The new sequence model type
allows each each sequence in the training set to have exactly zero or one occurrences
of each motif. This type of model is ideally suited to discovering multiple motifs
in the majority of cases encountered in practice. The motif-width heuristic allows
MEME to automatically discover several motifs of differing, unknown widths in a
single DNA or protein dataset. We also describe an improved method of finding
multiple, different motifs in a single dataset.

2 Overview of MEME

The principal input to MEME is a set of DNA or protein sequences. Its principal
output is a series of probabilistic sequence models, each corresponding to one motif,
whose parameters have been estimated by expectation maximization [Dempster et
al., 1977). In a nutshell, MEME’s algorithm is a combination of

e expectation maximization (EM),
e an EM-based heuristic for choosing the starting point for EM,

e a maximum likelihood ratio-based (LRT-based) heuristic for determining the
best number of model free parameters,

e multistart for searching over possible motif widths, and
e greedy search for finding multiple motifs.

The objective of MEME is to discover the occurrences of motifs in a dataset
of sequences and output the positions of the motif occurrences and descriptions of

the motifs. The user of MEME provides the dataset of sequences and specifies a
type of sequence model from among three different types which MEME supports.
Each of these sequence model types incorporates different assumptions about the
number and distribution of occurrences of motifs in the dataset. In particular, they
assume either exactly one motif occurrence per sequence, zero or one occurrence
per sequence, or any number of (non-overlapping) motif occurrences per sequence.
The models used by MEME are all finite mixture models, one component of which
describes the motif. The sequences in the dataset are assumed to be independent
samples from some model of the type specified by the user. MEME fits the parame-
ters of a model are to the observed data (the sequences), and outputs the parameters
motif component of the model. To discover multiple different, non-overlapping mo-
tifs, MEME repeats this process using the estimated positions of motif occurrences
already found as a statistical prior during parameter fitting.

MEME discovers a motif by considering a series of models of the type specified
by the user. The models considered differ only in the width of the motif which they
assume. For each model, MEME uses a Bayesian variant of EM to find the best values
of its free parameters given the dataset of sequences. Through the use of different
Bayesian priors, background knowledge about the properties of the molecules which
the sequences represent can be used to inform the search for motifs. Background
information about certain types of motifs motifs such as DNA palindromes can be
incorporated into the model by constraining some of the model free parameters in
certain ways. The use of Bayesian priors also alleviate to some extent the problem
of getting stuck at local optima discussed below.

EM suffers from a tendency to get stuck at local optima. One way of overcoming
this problem is to rerun EM repeatedly from different random starting points—
initial values of the model free parameters—and choose the model with the highest
likelihood. A faster method is to find one good starting point and run EM to
convergence from it. Because EM usually converges quickly from good starting
points, the likelihood of the model after one iteration of EM is a useful measure
of starting point goodness. MEME uses a method based on this idea to choose a
good starting point for EM. This is done via a dynamic programming algorithm
which simultaneously estimates the goodness of several possible starting points. In
addition, the starting points tested are not random. Some of the subsequences in the
dataset are presumed to be motif occurrences. MEME generates potential starting
points by mapping subsequences to model parameters. It systematically tests all
starting points which can be generated in this way from the actual subsequences in
the dataset. EM is only run to convergence from the best of these starting points.

As mentioned above, MEME considers a series of models of the type selected by
the user with differing motif widths. It also considers certain biologically-plausible

constraints on the free parameters of the models. These models have differing num-
bers of free parameters, so their likelihoods cannot be used directly to choose the
best among them. To choose the best model, MEME uses a heuristic function based
on the maximum likelihood ratio test. This function computes a score for a model
from its likelihood and number of free parameters. The value of this function is
computed for each of the final models delivered by EM, and the one with the best
value of this function is chosen as the final model. The motif component of this
model is output and the estimated positions of its occurrences are used during the
discovery of succeeding motifs to avoid rediscovering the same motif. Finding one
motif at a time avoids the combinatorial explosion in possible numbers of different
motifs of different widths with different numbers of occurrences per sequence.

3 Models

3.1 OOPS, ZOOPS, and TCM models

The different types of sequence model supported by MEME make differing assump-
tions about how and where motif occurrences appear in the dataset. We call the
simplest model type OOPS since it assumes that there is exactly one occurrence
per sequence of the motif in the dataset. This type of model was introduced by
Lawrence and Reilly [1990]. This paper describes for the first time a generalization
of OOPS, called ZOOPS, which assumes zero or one motif occurrences per dataset
sequence. Finally, TCM (two-component r;lixture)_models assume that there are zero
or more non-overlapping occurrences of the motif in each sequence in the dataset,
as described by Bailey and Elkan [1994].

Each of these types of sequence model consists of two components which model,
respectively, the motif and non-motif (“background”) positions in sequences. A
motif is modeled by a sequence of discrete random variables whose parameters give
the probabilities of each of the different letters (4 in the case of DNA, 20 in the
case of proteins) occurring in each of the different positions in an occurrence of the
motif. The background positions in the sequences are modeled by a single discrete
random variable. If the width of the motif is W, and the alphabet for sequences is
L ={a,...,z}, we can describe the parameters of the two components of each of
the three model types in the same way as

0=[6 61]=[pPo P1 P2 --- Pw]

Pa,O Pa,l Pa,2 Pa,W
Py By Po ... Bw

Pz,O Pz,l Pz,2 Pz,W

Here, P, ; is the probability of letter x occurring at either a background position
(j = 0) or at position j of a motif occurrence (1 < 7 < W), 6 is the parameters of
the background component of the sequence model, and 6 is the parameters of the
motif component.

Formally, the parameters of an OOPS model are the letter frequencies 6 for the
background and each column of the motif, and the width W of the motif. The
ZOOPS model type adds a new parameter, v, which is the prior probability of a
sequence containing a motif occurrence. A TCM model, which allows any number
of (non-overlapping) motif occurrences to exist within a sequence, replaces v with
A, where A is the prior probability that any position in a sequence is the start of a
motif occurrence.

3.2 DNA palindromes

A DNA palindrome is a sequence whose inverse complement is the same as the
original sequence. DNA binding sites for proteins are often palindromes. MEME
models a DNA palindrome by constraining the parameters of corresponding columns
of a motif to be the same:

Pog Poz2 ... P2 P
o, | Pt Pz - Pz Po
Pyi Py ... Py Py
Py PBp ... Poo Py
That is,
P,; = Pwyi-i,
Pc,z’ = Pg,W—I—lfia
Py; = Powii—i,
P; = Pwii
fori=1,...,[W/2]|. The last column is an inverted version of the first column, the

second to last column is an inverted version of the second column, and so on. Notice
also that, although corresponding columns in the palindromic motif model have the
same parameter values, the columns in the motif are still independent. In other

4

words, in a motif occurrence (i.e., a sample from the distribution over sequences
of length W defined by the motif), the probability of a particular letter occurring
in any position is not affected by knowledge of which letter occurred at any other
position. As will be described below, MEME automatically chooses whether or not
to enforce the palindrome constraint, doing so only if it improves the value of the
LRT-based objective function.

4 Expectation maximization

Consider searching for a single motif in a set of sequences by fitting one of the
three sequence model types to it. The dataset of n sequences, each of length L,
will be referred to as X = {X7,Xs,...,X,}.! There are m = L — W + 1 possible
starting positions for a motif occurrence in each sequence. The starting point(s) of
the occurrence(s) of the motif, if any, in each of the sequences are unknown and are
represented by the the variables (called the “missing information”) Z = {Z; ;|1 <
i <n,1 <j < m} where Z;; = 1 if a motif occurrence starts in position j in
sequence X;, and Z; ; = 0 otherwise. The user selects one of the three types of
model and MEME attempts to maximize the likelihood function of a model of that
type given the data, Pr(X|¢), where ¢ is a vector containing all the parameters of
the model. MEME does this by using EM to maximize the expectation of the joint
likelihood of the model given the data and the missing information, Pr(X, Z|¢).
This is done by selecting an initial value ¢(®) for the model parameters and then
repeating the following two steps, in order, until a convergence criterion is met.

o E-step: compute

e M-step: solve

¢(t+1) — argmax E [log PT(X7Z|¢)]
¢ (21X90)

This process is known to converge [Dempster et al., 1977] to a local maximum of
the likelihood function Pr(X|¢).

Tt is not necessary that all of the sequences be of the same length, but this assumption will be
made in what follows in order to simplify the exposition of the algorithm. In particular, under this
assumption, A = y/m.

4.1 Joint likelihood functions

MEME assumes each sequence in the training set is an independent sample from a
member of either the OOPS, ZOOPS or TCM model families and uses EM to maximize
one of the following likelihood functions. The logarithm of the joint likelihood for
models of each of the three model types is as follows. For an OOPS model, the joint
log likelihood is

log Pr(X Z|9)

1
ZZZwlogPr(X |Zi,j = 1,6) + nlog —.
i=1j=1

For a ZOOPS model, the joint log likelihood is
log Pr(X, Z16,7)

n o m
ZZZZ'J logPT(XZ'|Zi,j = 1,9)

i=1j=1
n

+) (1 — Qi) log Pr(X;|Q; = 0,0)
i=1

—I—Z 1—Q;)log(l—~ —}—ZQzlog/\
i=1 =1

For a TCM model, the joint log likelihood is

log Pr(X Z|9 A)

ZZ Z; ;) log Pr(X; ;|6o)

i=1j5=1

-I-Zi,j log P’I"(Xi,jwl)

+(1 — Z; ;) log(1 — X) + (Z; ;) log A.
The variable Q; used in the ZOOPS likelihood equation is defined as @Q); = E;"Zl Z,
Thus, @; = 1 if sequence X; contains a motif occurrence, and); = 0 otherwise. The

conditional sequence probabilities for sequences containing a motif used by OOPS
and ZOOPS models are defined as

IOgP’l"(X“ZZ'j =1 9)

w—
Z) j—l—k logpx + Z I(i, k)" log po,
k=0 kEA;

where I(i,7) is a vector-valued indicator variable of length A = |L£|, whose entries
are all zero except the one corresponding to the letter in sequence X; at position
g, Xij. Aij = {1,2,...,5 —1,5 +w,...,L} is the set of positions in sequence
X; which lie outside the occurrence of the motif when the motif starts at position
j. The conditional probability of a sequence without a motif occurrence under a
ZOOPS model is defined as

L
Pr(X;|Q; = 0,0) = [[Px,.0-
k=1

The conditional probability of a length-W subsequence generated according to the
background or motif component of a TCM model is defined to be

Ww-1
log Pr(X;;0.) = > I(i,j+k)" logp,
k=0

where k' = 0 if ¢ = 0 (background), and k' = k + 1 if ¢ = 1 (motif).

4.2 The E-step

The E-step of EM calculates the expected value of the missing information—the
probability that a motif occurrence starts in position 5 of sequence X;. The formulas
used by MEME for the three types of model are given below. Derivations are given
in Section???. For an OOPS model,

(t) o P?"(X,L'ZZ,] = 1, O(t))
WY Pr(X|Ziy = 1,00)
For a ZOOPS model,
70 = # where

I fo+ X0 fi

fo = Pr(Xi|Qi=0,6")(1—1"), and

fi = Pr(XilZi; =160\, 1<j <m.
For a TCM model,
720 Pr(X,;(6{")A®
2y}

Pr(Xij10) (1 = A0) + Pr(X, ;|0)A®)

4.3 The M-step

The M-step of EM in MEME reestimates 6 using the following formula for models
of all three types:

(t+1) ¢ +d(cg)

=————°= 0<k<W, where
P lex +d(ck)]” — W
. t—Y ¢ if k=0,
¢ =1 gt Z;?I(z',j +k—1) otherwise.

Here d(cg) is a function of the estimated letter counts c; that yields a vector of
pseudo-counts which is used to incorporate background information into EM as will
be described later, t is the length- A vector of total counts of each letter the dataset,
and |x| is the sum of the components of vector x. For ZOOPS and TCM models,
parameters v and A are reestimated during the M-step by the formula

(t+1) 1 2
(t+1) _ _ ZZ (t)
A T m _nm.l.lzi’j'
1=1 7=

5 Finding multiple motifs

All three sequence model types supported by MEME model sequences containing a
single motif (albeit a TCM model can describe sequences with multiple occurrences
of the same motif). To find multiple, non-overlapping, different motifs in a single
dataset, MEME uses greedy search. It incorporates information about the motifs
already discovered into the current model to avoid rediscovering the same motif.
The process of discovering one motif is called a pass of MEME.

The three sequence model types used by MEME assume, a priori, that motif
occurrences are equally likely at each position j in sequence X;. This translates into
a uniform prior probability distribution on the missing data variables Z; ;. That is,
initially, MEME assumes that Pr(Z;; = 1) = X for all Z; ;.> On the second and
subsequent passes, MEME changes this assumption to approximate a multiple-motif
sequence model. A new prior on each Z; ; is used during the E-step that takes into
account the probability that a new width-W motif occurrence starting at position
X ; might overlap occurrences of the motifs found on previous passes of MEME.

*For an OOPS model, A = 1/m. For a ZOOPS model, A\ = ~/m.

To help compute the new prior on Z; ; we introduce variables V; ; where V; ; =1
if a width-W motif occurrence could start at position j in sequence X; without
overlapping an occurrence of a motif found on a previous pass. Otherwise V; ; = 0.

V. — 1, if no old motifs in [Xj,..., Xj1u_1]
b 0, otherwise

fori=1,...,nand j=1,..., L.

To compute V; ; we use another set of binary variables U; ; which encode which
positions in the dataset are not contained in occurrences of previously found motifs.
So, U; j is defined as

1, if X; ; € previous motif occurrence
Ui’j = 0 .
, otherwise
fore=1,...,nand j=1,...,m.

As with the missing information variables Z; ;, MEME computes and stores the
expected values of the variables U; ;. Before the first pass of MEME, the probability
that X; ; is not already contained in a motif, the expected value of U; j, is set to

(0)

one: Up/ =1 fori =1,...,mnand j = 1,..., L. These values are updated after each

pass according to the formula

-1
Ui(g') - Uz'(g‘)(1_k:jfnl}lafl...jzgg) W

where Zz(;) is the final estimate of the missing information at the end of the current
pass, p. Intuitively, we change the estimate of X;; not being part of some motif
by multiplying it by the probability of it not being contained in an occurrence of
the current motif. This we estimate using the most probable motif occurrence of

)

the current width that would overlap it. We use the maximum of Zz-(’tj because

occurrences of the current motif cannot overlap themselves, hence the values of Zi(fj)
are not independent, so the upper bound on the probability used here is appropriate.
The value of Uz-(g-) is then used as the value for Pr(U;; = 1) in equation (2) below
during the next pass, p + 1.

MEME estimates the probability of a width-W motif occurrence not overlapping
an occurrence of any previous motif as the minimum of the probability of each
position within the new motif occurrence not being part of an occurrence found on
a previous pass. In other words, MEME estimates Pr(V;; = 1) as

Pr(V,;=1) = k=j ..I.n]-i—I{—IW—l Pr(Uiy =1). (2)

The minimum of Pr(U;y) is used because the probability of adjacent positions in
sequence X; not being contained in motif occurrences found on previous passes
is clearly not independent. An approximate formula for reestimating Z; ; in the
E-step of EM which takes motifs found on previous passes into account and thus
approximates a multiple-motif model can be shown to be

70 = Z;.:] Pr(Vi; =1).
" (Z\XE,)(ﬁ(t))[il Pr(Vig)

MEME uses ZAZ(Z) in place of ZZ-(,? in the M-step of EM and in equation (1) above.

5.1 Multiple motif details

The rationale for how the U; ; variables are updated is presented below. The differ-
ence between soft and hard erasing is discussed in the context of avoiding a problem
with periodic motifs.

2,7
in any motif found on passes one through p — 1. Let C} be the event that X;; is
contained in a motif found on pass k. Then

The variable U® Y stores the probability that position Xj;; is not contained

Ul = PrCiACo A ... ACpo).
After pass p, we want Ui(g-) to be
U®) = PrCiACe A... ATy 1 AGyp).
If we assume that event C), is independent from the other events C;, we can write
U = vV Pr(Cy). (3)

This assumption is not strictly justified, but multiplying probabilities causes them
to approach zero, so any new evidence that X; ; is contained in the a motif provided
by Pr(C,) will tend to reduce our belief that X; ; is not contained in a motif.

To compute Pr(C)), let My, be the event that a motif discovered on pass p starts
at position X; ;. Then the event C), is the union of the series of events consisting of
motifs starting to the left of or just at X; ;.

Cp = Mj_W_|_1 \Y Mj—W—|—2 V...V Mj.

Using deMorgan’s theorem, the negation of this event is

ﬁp = Mj_W_|_1 A Mj_W_|_2 N... /\Wj.

10

Since the probability of a union of events is always less than that of its least probable
event, we can bound the probability of X; ; not being contained in any motif found
on pass p by

Pr(ﬁp) = PT(M]',W_H A Mj,W_FQ VAN Mj) < k:jlzllgl—i—l,j P’I‘(M)

The value of Zi(f,z gives an estimate of Pr(My), so we can write

Pr(C,) < min Pr(My)

k=j—-W+1,j
= 1- Pr(M
=55, O
= 1- z0. 4
k:jrflz/ivﬁl,j bk)

The updating of the values of U can be thought of as “erasing” the occurrences

of the motif just discovered. Since MEME uses the upper bound for Pr(C,) in

computing Ul-(g-), it will tend to err by predicting that X;; is not contained in a
motif when it actually is. The erasing of motifs used by MEME is thus somewhat
“soft”. We could making the erasing “hard” by multiplying probabilities instead
of taking the maximum in equation (4), but experiments showed that this causes
problems with certain types of motifs with periodic structure. For example, a motif
representing the sequence pattern “AxxAxxAxxA” (where “x” means any letter)
has a period of three. When such motifs match position X;;, they also tend to
match positions X; 15, Xjji2s, etc., where s is the period of the motif. Hard
erasing tends to (erroneosly) erase many positions which match weakly to such
motifs because the weak matches are not independent. Soft erasing, which does not
assume independence of the events My, prevents this.

6 Using prior knowledge about motif columns

Applied to models of the forms described above, the EM method suffers from two
problems. First, if any letter frequency parameter is ever estimated to be zero
during EM, it remains zero. Second, if the dataset size is small, the maximum
likelihood estimates of the letter frequency parameters tend to have high variance.
Both these problems can be avoided by incorporating prior information about the
possible values which the letter frequency parameters can take. = The modified
EM algorithm used by MEME actually performs Bayesian estimation as opposed to
maximum likelihood estimation: it maximizes the mean posterior probability of the
data assuming some prior distribution over the parameters of the model. As long

11

as the prior distribution over the parameters of the model gives zero probability to
any letter frequency parameter being equal to zero, the first problem is prevented.
The second problem is reduced in severity because the influence of the prior on the
posterior probability estimate increases as the size of the dataset decreases.

Using a mixture of Dirichlet densities as a prior in the estimation of the param-
eters of a model of biopolymer sequences has been proposed by Brown et al. [1993].
This approach makes sense especially for proteins where many of the 20 letters in the
sequence alphabet have similar chemical properties. Motif columns which give high
probability to two (or more) letters representing similar amino acids are a priori
more likely. A Dirichlet mixture density has the form p = q101 + ... + qrpr where
pi is a Dirichlet probability density function with parameter 8 = (ﬁ((zi), e ,ﬂgi)).
A simple Dirichlet prior is the special case of a Dirichlet mixture prior where R = 1.

MEME uses Dirichlet mixture priors as follows. In the M-step, the mean posterior
estimates of the parameter vectors p;, 2 = 1 to W, are computed instead of their
maximum likelihood estimates. Let ¢ = [cq,...,c;]T be the vector of expected
counts of letters a,...,z in a particular column of the motif. We will consider this
to be the “observed” letter counts in this column of the motif. The probability of
component j in the Dirichlet mixture having generated the observed counts for this
column is calculated using Bayes rule,

q;Pr(c|BY))
Y i Pr(c|f®)’

If we define ¢ = |¢| = Y ¢ ¢ and BU) = |80)| =% ﬁa(gj), then

pr(ﬁ(j)|c) =

T'(c+ 1T (W) 0 T(cy + b))

Pr(c|g)) = T(c 1 b)) T(b9)

where I'(-) is the gamma function. We estimate the vector of pseudo-counts as a
function of the observed counts as d(c) = [d,,dy, . .. ,d,]T where

R
dy = Y Pr(B9e)sY), z € L.
j=1

for 1 = 1 to A. The mean posterior estimate of the letter probabilities py in column
k of the motif is then

(t+1) cx +d(cg)

* ek + d(ck)|
for kK =1 to W. This gives the Bayes estimate of the letter probabilities for column
k of the motif and is used to reestimate 8 in the M-step.

12

Brown et al. [1993] have published several Dirichlet mixture densities that model
well the underlying probability distribution of the letter frequencies observed in
multiple alignments of protein sequences. The experiments reported in this paper
use either their 30-component Dirichlet mixture prior or a 1-component prior where
B = p is the vector of average letter frequencies in the dataset.

7 Determining the number of model free parameters

The number of free parameters in a model of any of the MEME sequence model types
depends on the width of the motif and on whether or not the DNA palindrome con-
straints are in force. When the width of the motifs is not specified by the user and/or
when MEME is asked to check for DNA palindromes, MEME chooses the number of
free parameters to use by optimizing a heuristic function based on the maximum
likelihood ratio test (LRT). The optimum width of a motif depends on how many
consecutive positions in the biopolymer sequences of a family are constrained by
physical, chemical or biological considerations. The likelihood function cannot be
used directly for comparing models with different motif widths, because its maxi-
mum value always increases with increasing W, as this adds more free parameters
to the model. Likewise models of a given width with the palindrome constraints in
force will have lower maximum likelihood values than unconstrained models.

The LRT is based upon the following fact [Kendall et al., 1983]. Suppose we
successively apply constraints C1, ..., Cs to a model with parameters ¢ and let ¢,
be the maximum likelihood estimator of ¢ when all constraints C1, ..., Cs have been
applied. Then, under certain conditions, the asymptotic distribution of the statistic

Pr(X|¢)
PT(X|¢(S))

is central x? with degrees of freedom equal to the number of independent constraints
upon parameters imposed by Cy,...,Cs.

MEME uses the LRT in an unusual way to compute a measure of statistical
significance for a single model by comparing it (and all other models of its type)
to a “universal” null model. The null model is designed to be the simplest possible
model of a given type. Let ¢ be the parameters of a model discovered by MEME
using EM. Then, ¢ is the maximum likelihood estimate (MLE) for the parameters of
the model.? Likewise, let ¢y be the maximum likelihood estimate for the parameters

X2 =2log

3We overlook the possibility that EM converged to a local maximum of the likelihood function.
We note also that ¢ is actually the mean posterior estimate of the parameters, not the MLE, when
a prior is used. In practice, the value of the likelihood function at ¢ is close to the value at the
MLE.

13

of the null model. Since both ¢ and ¢y are maximum likelihood estimates, the LRT
can be applied to these two models. At some significance level between 0 and 1, the
LRT would reject the null model in favor of the more complicated model. We define
LRT(¢) to be this significance level, so

LRT(¢) = Q(x’|v), where

OE/m)'P—(1-2)

2/(9v)
[Abramowitz and Stegun, 1972]. Q(=z2) is the @ function for the standard normal
distribution (i.e., size of the right tail), and v is the difference between the number
of free parameters in the model used with EM and the null model. There are A — 1
free parameters per column of €, so the difference in free parameters is v = W(A—1)
for all three model types. If the DNA palindrome constraints are in force, half the
parameters in #; are no longer free and v = (W/2)(A — 1).

To compute the value of LRT(¢) we need values of the likelihood functions
for the given and null models and the difference in the number of free parameters
between them. For the likelihood of the given model, MEME uses the value of
the joint likelihood function maximized by EM. For the null model, it is easy to
show that the maximum likelihood estimate has all columns describing motif and
background positions equal to pu where gt = [pg,...,u,]7 is the vector of average
letter frequencies in the dataset. The log likelihood of the null model is

log Pr(X|go) = nL) pglog pig.
TEL

QUX*lv) = Q(z2), z2=

The criterion function which MEME minimizes is
G(¢) = LRT($)"/".

This criterion is related to the Bonferroni heuristic [Seber, 1984] for correcting sig-
nificance levels when multiple hypotheses are tested together. Suppose we only want
to accept the hypothesis that ¢ is superior if it is superior to every model with fewer
degrees of freedom. There are v such models so the Bonferroni adjustment heuristic
suggests to replace LRT(¢) by LRT(¢p)v. The function G(-) applies a much higher
penalty for additional free parameters and yields motif widths much closer to those
chosen by human experts than either LRT'(¢) or LRT (¢)v.

14

8 The MEME algorithm

The complete MEME algorithm is sketched below. The number of passes and max-
imum and minimum values of motif widths to try are input by the user. If the
model type being used is OOPS, the inner loop is iterated only once since A is not
relevant. For a ZOOPS model, Apin, = 1/(m+/n) and Apey = 1/m. For a TCM
model, Apin, = 1/(m+/n) and A\ee = 1/(W +1).* The dynamic programming im-
plementation of the inner loop, the EM-based heuristic for choosing a good value
of 6©) as a starting point for EM, and the algorithms for shortening motifs and
applying the DNA palindrome constraints and the time complexity of the algorithm
are described below.

procedure MEME (X: dataset of sequences)
for pass =1 to passyg,; do
for W = Win to Wines by xv/2 do
for AO =)i, to A\pee by X2 do
Choose good 8 given W and X9,
Run EM to convergence from chosen
value of ¢(0) = (9(0 \O) W),
Remove outer columns of motif
and/or apply palindrome constraints
to maximize G(¢).
end
end
Report model which maximizes G(¢).
Update prior probabilities U; ; to
approximate multiple-motif model.
end
end

9 Avoiding local optima

The model to which EM converges locally maximizes the likelihood function. We
would like to find the sequence model of the given type and motif width which
globally maximizes the likelihood. The inner loop of MEME attempts to do this by

4Since there are n sequences, these values of A correspond to there being on average at least one
motif occurrence for every y/n-th sequence, and at most one occurrence per sequence in a ZOOPS
model, and at most half of the total positions in the dataset being part of motif occurrences in a

TCM model.

15

running EM once from a succession of different initial values of the mixing parameter
A. As mentioned above, a geometric series of initial values of A are considered. For
a ZOOPS model of a given width, MEME finds and runs EM to convergence from
log, v/n starting points. For a TCM model, log (m(W + 1)/n) starting points are
found and EM is run to convergence from each of them. MEME uses a dynamic
programming algorithm based on a single EM iteration to simultaneously choose a
good initial value for @ for each initial value of \.5 EM is run to convergence from
each of the (0,) pairs selected by the starting point finding algorithm. Emprical
results show that this approach works well at avoiding local optima.

The algorithm for finding good starting points for EM evolved from a straightfor-
ward multi-start approach. Multi-start with EM means running EM to convergence
from a number of different starting points and choosing the model with the highest
likelihood as the final model. The most obvious way to choose the starting points is
to randomly or systematically sample from the space of (8, \) pairs. MEME samples
systematically over A, but uses information in the dataset to provide good candidate
values for . This is done by generating candidate values of § by mapping each width-
W subsequence in the dataset, in turn, to a § matrix. Some of these subsequences
will be the actual motif occurrences and the mapping function described below in-
sures that the corresponding 6 values are likely to be good starting points. Because
EM tends to converge quickly from good starting points, the likelihood of the model
after one iteration of EM turns out to be an excellent predictor of starting point
goodness. MEME scores each potential starting point for EM using an algorithm
that estimates the what the likelihood of the model would be after one iteration of
EM. This scoring algorithm is optimized to simultaneously compute scores for any
number of (6, \) pairs for a given value of . Additional speed is achieved through
the use of dynamic programming techniques. These reuse the computations done in
scoring the starting points generated by the subsequence starting at position X; ;
in the dataset when scoring the starting points generated by the next overlapping
subsequence starting at position Xj ;1.

9.1 Mining the dataset for EM starting points

We would like to find good initial values for 8 to use as starting points for EM.
Rather than using random or systematic sampling from the space © of possible
values for §, MEME uses the average frequencies g of letters in the dataset as
the initial estimate for the background component of the model 8y, and estimates
the initial value of the motif component #; by assuming that each subsequence of

5The goodness of an initial (6,) pair is how likely EM is to converge from it to the globally
optimal model.

16

length W in the dataset, in turn, is an occurrence of the motif. This is identical
in principle to the overall Bayesian approach MEME uses to discover motifs. If a
motif occurrence starts at position j in sequence X; of the dataset, then the mean
posterior estimate of the motif component of the model 8y based on this sample of
size one is the same as in the M-step of EM,

c +d(cy)

", 1<k W,
lck + d(cy)|

Pr =
where ¢ = I(i,7 + k — 1) is the vector of “observed” letter counts. Since all the
entries in ¢ are zero except the one corresponding to the letter in position k of
the string starting at X; ; in the dataset, there are only A = |L| possible values for
ci—one for each letter in the alphabet. So only A values of ¢ + d(c) will ever be
needed for any choice of prior on p. MEME computes these and stores them as an
A x A sequence-to-theta mapping table

0 — p® p® ... p0)

where p§?) is the initial estimate of p to use for a column of the motif when the

observed letter is £ € L. As will be described below, MEME allows the user to
specify which the size and type of prior to be used in computing p(@.

To illustrate using the standard DNA alphabet £ = {a,c,g,t}, suppose the
string starting at X; ; is “tgtcat”. If the uniform Dirichlet prior with 8 = [1111]7
used, then the sequence-to-theta mapping table is

2/5 1/5 1/5 1/5
(0) _ [(0)1(0),(0),(0)7 _ 1/5 2/5 1/5 1/5
1/5 1/5 1/5 2/5

and the initial estimate for the motif component of the sequence model is

1/5 1/5 1/5 1/5 2/5 1/5

|15 o1 15 25 175 175

61 = ppVpVpPVppV] = 1/5 2/5 1/5 1/5 1/5 1/5
2/5 1/5 2/5 1/5 1/5 2/5

Observe that column k of the §; matrix is just the column from the mapping table
corresponding to the letter at position X; ;jp 1.

MEME supports sequence-to-theta mapping tables based on a uniform Dirichlet
prior or based on a prior that incorporates knowledge about likely motif columns.

17

The user can also choose the “size” of the prior which determines the “fuzziness”
of the initial estimate of ;. With the uniform Dirichlet prior 3 = [s s ... s]T
the size of the prior is determined by s. Experiments reported in this paper which
use a sequence-to-theta mapping table based on the uniform prior use s = 0.52 for
DNA datasets and s = 0.15 for protein datasets. The other type of sequence-to-
theta mapping table supported by MEME is called a mutation probability matrices
(MPA) [Dayhoff et al., 1983]. Column z of an MPA matrix gives the estimated
probability of the amino- or nucleic-acid represented by letter z having mutated
to each other amino- or nucleic-acid letter in the alphabet (after some specified
evolutionary distance) based on statistics gathered from biological databases. Evo-
lutionary distance is measured in terms of percent accepted mutation (PAM) units.
One PAM is the distance between two related sequences such that 1% of the po-
sitions in the sequences are different. The user can specify the size of the prior
by specifying how many PAM units it should represent. Larger PAM values yield
“fuzzier” mapping matrices. Starting from the 1-PAM MPA matrix M, the n-PAM
MPA matrix can be computed by raising the 1-PAM MPA matrix M to the n-
th power, i.e. M™ = M x M X ... x M. Experiments reported here using MPA
sequence-to-theta mapping matrices typically use the 120-PAM MPA matrix shown
in Table 9.1. Sequence-to-theta mapping tables can easily be generated from any
prior, including Dirichlet mixture priors, but this is not currently implemented in
MEME since it would probably perform no better than MPA tables.

bl

9.2 Simultaneously testing multiple starting points

The following algorithm TEST is used by MEME to test all of the possible starting
points (#, A) generated by mapping subsequences in the dataset to values of 01, using
the overall letter frequencies as 6y, and a fixed value of A for an OOPS model or a
geometric series of A values for a ZOOPS or a TCM model. TEST is motivated by a
single iteration of EM but is much faster because it simplifies the E- and M-steps,
uses dynamic programming in the E-step, and simultaneously performs the E-step
for any number of values of A\. For a given value of 61, TEST finds the most likely
positions for motif occurrences in the dataset (subject to the constraints imposed
by the type of model such as one occurrence per sequence). It sorts these positions
according to their likelihood given 6; if more than one value of X is to be tested.
Then it computes the observed letter frequences in each column of the motif given
the most likely nmA; subsequences in the dataset for each A; to be tested. These
observed frequencies are used as the estimate of 0; after one iteration of EM and
the likelihood of the new model is used as the score of the potential starting point.
The algorithm is sketched below.

18

A C D E F G H
22 111

A 265
C 1
D 41
E 48
F 10

()
ok
L N = =
TN W N

HOWZEH R~ T
w
~N

Table 1:
by 1000.

32
726
)
)
)
19
8
15
8
6
1
8
14
3
10
57
19
26
0
23

73
3

82
3

257 154
163 269
4 550
13 490
7 370

9 261
46 34 453
34 134

4
78
29
11
59
12

3
92
22
48
12
60
40
19

0

)

64
25
13
56
18

4
52
30
89
15
51
33
23

0

4
4
)

16
38
8
96
9
11
11
5
9
21
15
26
8

7 135

4
43
36

9

8
28
15

2
37
28
15

7
83
38
28

0

3

34

8
40
38
17
25

4
70
36
92
95
35
22

I K L

58
10
15
20
43
22

7

25
18
17
13
19
30
54

22 205

1
25

0
13

37

3
33
33

4
30
20
16

36
2
7

13

45

16

10

95

19

M
46

3
10
16
30
21

8
60
92

26 560 218
38 233

18
52
23
37
96
52
49
19

1

3

10
18
19
11
18
23
79

0
13

14
17
23
29
31
39
92

0

7

NP QR ST VWY
72 112 58 33 127130 8 8 20

6 11 3 9 26 12 15 1 23
107 22 59 14 41 32 15 3 7
64 30116 18 36 29 20 2 9
11 4 5 9 13 12 14 27180
77 47 38 22107 57 43 5 8
59 23 80 44 17 14 9 10 26
16 9 12 14 15 34118 3 15
102 36 77188 60 67 22 14 13
25 27 40 19 21 34107 34 32

5 3 10 9 7 11 21 2 2
162 24 37 25 56 43 15 9 20
29 430 47 36 60 41 23 5 6
35 34260 47 21 19 13 4 5
25 29 51379 30 19 12 53 5
96 84 41 54208 122 35 29 20
62 49 30 30103 258 54 7 17
23 29 23 20 32 59361 4 19

1 1 113 5 1 070 9
15 3 5 3 9 9 9 18540

The 120-PAM MPA matrix for proteins. All entries have been multiplied
The letters are the standard one-letter codes for amino acids.

19

procedure TEST(W, list of \ values, model type, dataset)
set Op = p , average letter frequencies in dataset
for each sequence Xj in dataset do
for each width-W subsequence starting at position [in X do
map subsequence X} ; to 6
for each sequence X; in dataset do
for each width-W subsequence starting at position j in X; do
compute Pr(X; ;|61)
end
end
if (model type is OOPS or ZOOPS)
make list of single subsequence in each sequence
with maximum value of Pr(X; ;|6)
else
make list of non-overlapping subsequences with locally
maximum value of Pr(X; ;|6:)
end
if (model type is ZOOPS or TCM)
sort positions of maximum Pr(Xj; ;|6)
end
for each value of A in list do
calculate cg, 1 < k < W, given top nm subsequences in (sorted) list
estimate 6, after one pass of EM as 6, = [e1 e ... ew]
compute likelihood of model (6, 6, A)
save 0, if likelihood of (6,1,) best for this value of
end
end
end
end

Approximating EM. The main differences between TEST and a single iteration
of EM are that it approximates the expected value of the missing information with
Pr(X;;|61) and uses the positions with the maximum likelihood of being motif
occurrences to compute the observed letter counts rather than taking the expectation
of the joint likelihood of the sequences and the missing information. This works
well in practice because Pr(X; ;|0;) tends to reach its maxima at motif occurrences.
Using these positions as the observed data gives a good approximation of the letter
counts which EM would estimate after one iteration. As a result, the new estimate

20

of 01 tends to be close to what EM would find when the initial 8; is a good starting
point. This causes the likelihood of the new model to be close to that which EM
would discover.

Testing several values of A at once. When several starting values of A are
to be tested for a ZOOPS or TCM model, TEST sorts the subsequences X; ; in the
dataset by Pr(X; ;|61). For a ZOOPS model, only a single subsequence with maximal
Pr(X;]01) from each sequence X; is put in the list. For a TCM model, each se-
quence may contribute more than one motif occurrence, so the non-overlapping sub-
sequences with locally-maximal Pr(X; ;|61) are all put in the list before it is sorted.
Calculating the observed counts ¢ from this list is extremely efficient since the counts
are always computed for increasingly larger values of A. If (/\(1), PN)\(T)) is the
list of A values to be tested in increasing order, then the observed letter counts for
A1) are computed by summing over the letters in the first nmA() subsequences in the
sorted subsequence list. (These subsequences are the most likely motif occurrences.)
The counts for the next larger value of A\ involve the top nmA? subsequences, so
the letters in the next nm(A(® — A1) subsequences must be added to the previous
counts. This procedure can continue for all values of A in the list, optimizing the
computation of the observed counts for any number of A\ values.

Dynamic programing. TEST uses dynamic programming to optimize the cal-
culation of Pr(X;;|61). Let 9§k’l’w) be the value of #; gotten from the length-w
subsequence at position Xj; in the dataset. TEST reuses the computations for
Pr(Xi,j|9§k’l’W)) when calculating Pr(Xi,j+1|0§k’l+1’W)), saving a large amount of
computation. The recursion relation used is

Pr(Xi; |9§k’l’w))Pr(Xi,j+W|0§k’l+w’1))

Pr(Xi 0" =
Pr(X; ;60"

(5)

This calculation takes only two floating point operations rather than the (W — 1)

which would be required to compute Pr(Xi,j+1|0§k’l+1’W))

the W probabilities in 0§k,l+1,W)) corresponding to the letters in the length-W sub-

.. . EJ+1,W) . .
sequence at position X; ;. The recursion works because 0§ +LW) 55 a shifted ver-

sion of Pr(Xi,j\Hgk’l’W) with new column 9§k’l+w’1) on the right and column 9gk’l’1)
removed on the left. So the same probabilities are selected for each letter when
Pr(Xi’j+1|0gk’l+l’W)) is calculated as when Pr(X,-’j|0gk’l’W)) was calculated except
for the two letters on either end.

To illustrate, the initial § matrices derived from consecutive subsequences start-
ing at Xj; and Xy ;11 are composed of column vectors corresponding to the letters
in X; as shown below.

by multiplying together

21

3 3
Xy, = . . . a ¢ t g t a a t
o = P P2 o el
0§,+,) [pg)pg) p(g) pi)]

The probabilities of a subsequence starting at position % or i 4+ 1, respectively, in
any sequence X; given the two initial values of 8 shown above are related as shown
below. X; given each of these values of 8; can then be visualized as

Xi,j Xij+w
\J 1
X; = . . .t a t a c c t
kb, W 0) _(0) _(0) _(0
Pr(X, ;|0 = p) PEA P} Pha
kA1, W
Pr(X; 4|0y = pi bl PYA Pl

where p;(,?,)(means the entry in the pgo) vector corresponding to letter z. Hence the
value of Pr(Xi,j+1|0§k’l+1’W)) can be calculated recursively from Pr(Xi,j|9§k’l’W))
by dividing by p{%o and multiplying by p{ay where 20 = X;; and z1 = Xij+w,
as shown in the recursion formula (5). Algorithm TEST computes Pr(Xi’j|0§k’0’W))
directly each time it enters its second for loop. On successive passes through that
loop it uses the recursion relation shown above to save time.

Avoiding round-off errors. To avoid round-off errors, the recursion is done
with integer arithmetic and logarithms. All of the values involved in computing the
scores as well as the scores themselves are always between 0 and 1. So their loga-
rithms lie between 0 and minus infinity. To perform integer logarithm arithmetic,
each value 0 < z <1 is converted to a scaled logarithm using the formula

iz = [aloge(z + €)].

This formula with appropriate choice of a and e yeilds integral values between 0 and
the machine-dependent smallest integer value. For 32-bit machines, good choices
are € = 10729 and a = 10%. For z > 2(-1/%) = 999307, i, = 0. For z = 0, i, =
—664385, well within the range of 32-bit integers. Thus, probabilities above .999307
are rounded up to 1, and the (approximate) range [10729° .999] is divided into
665385 parts each separated by a factor of 21/1000 — 1 00069 from their neighbors.
This scaling provides enough precision and dynamic range to capture the range of
interesting probability values. Since all calculations of S are done using the integer

22

values iz, no cumulative roundoff errors occur as a result of doing the calculations
recursively.

Time complexity of TEST. The maximum time complexity of computing the
probabilities without using dynamic programming would be proportional to

Tys = O(n*L?).

However, the total time with the dynamic programming approach used by algorithm
TEST is proportional to

Tap(W) = mn(base case + recursive part)
= O(n((L—W +1)(W —1) + (L — W)(L — W + 1)2))
= O(M*(L—-W+1)(W —1) +2n(L — W) (L - W + 1)),

so the time complexity of TEST is at worst quadratic in the size of the dataset. If
n is large compared to L, then the first term dominates and the time complexity is
approximately O(n?L?) when W = L/2. We expect that the length of the sequences
will usually exceed the number of sequences, and when this happens the second term
will tend to dominate and the time complexity will be O(2nL?).

10 Measuring performance

We measured the performance of the motifs discovered by MEME by using the final
sequence model output after each pass of as a classifier. The parameters, ¢, of
the sequence model discovered on a particular pass are converted by MEME into
a log-odds scoring matrix LO and a threshold ¢ where LO, ; = log(ps,j/ps0) for
j=1,...,Wand z € L, and t = log((1 — A\)/A). The scoring matrix and threshold
was used to score the sequences in a test set of sequences for which the positions
of motif occurrences are known. Each subsequence whose score using LO as a
position-dependent scoring matrix exceeds the threshold ¢ is considered a hit. For
each known motif in the test set, the positions of the hits were compared to the
positions of the known occurrences. The number of true positive (tp), false positive
(fp), true negative (tn) and false negative (fn) hits was tallied. From these, recall
= tp/(tp + fn) and precision = tp/(tp + fp) were computed.

We also calculated the receiver operating characteristic (ROC) [Swets, 1988] of
the MEME motifs. The ROC statistic is the integral of the ROC curve, which plots
the true positive proportion, tpp = recall = tp/(tp + fn), versus the false positive
proportion, fpp = fp/(fp + tn). The ROC statistic was calculated by scoring all
the positions in the test set using the log-odds matrix, LO, sorting the positions

23

ROC curves

1 L
[~ +
£ o9t P
o] 7

& o8l e
3 orf T
5 0.6 I
g o5p &
& o4t H 1 ROC =1.00 ~—
© 4 2ROC =085 —+—
£ 08 14 3ROC =087 -5
g8 o2t b
o ¢
S o1f @
= o

0

0 01 02 03 04 05 06 07 08 09 1
false positive proportion (fp/(tn + fp))

Figure 1: Example ROC curves.

by score, and then numerically integrating tpp over fpp using the trapezoid rule.
Sample ROC curves are shown in Figure 1. The decimal numbers in the legend
show the values of the ROC statistic for each curve.

MEME motifs which were shifted versions of a known motif were detected by
shifting all the known motif positions left or right the same number of positions
and repeating the above calculations of recall, precision and ROC. All shifts such
that all predicted occurrences overlap the known occurrences (by exactly the same
amount) were tried. The performance values reported are those for the best shift.
For datasets with multiple known motifs, recall, precision and ROC were calculated
separately for each known motif using each of the sequence models discovered during
the passes of MEME.

11 Results

We studied the performance of MEME on a number of datasets with different char-
acteristics. Seven datasets which were used in the development of MEME are sum-
marized in Table 2. Another 75 datasets each consisting of all the members of a
Prosite family are summarized in Table 3.

11.1 Development datasets

The protein datasets lip, hth, and farn, were created by Lawrence et al. [1993] and
used to test their Gibbs sampling algorithm. Very briefly, the lip dataset contains
the five most divergent lipocalins with known 3D structure. They contain two known
motifs, each occurring once in each sequence. The hth proteins contain DN A-binding

24

name | type N L W sites
proven | total
lip protein 5182 | 16 5 5
5 5
hth protein | 30 | 239 | 18 30 30
farn protein 5 (380 | 12 0 30
0 26
0 28
crp DNA 18 | 105 | 20 18 24
lex DNA 16 | 200 | 20 11 21
crplex | DNA 34 | 150 | 20 18 25
11 21
hrp DNA 231 | 58 | 29 231 | 231

Table 2: Overview of the datasets used in developing MEME showing sequence type,
number of sequences (N), average sequence length (L), and motif width (W). Proven
sites have been shown to be occurrences of the motif by laboratory experiment
(footprinting, mutagenesis, or structural analysis). Total sites include the proven
sites and sites reported in the literature based primarily on sequence similarity with

known sites.

quantity mean (sd)
sequences per dataset 34 (36)
dataset size 12945 (11922)
sequence length 386 (306)
shortest sequence 256 (180)
longest sequence 841 (585)
pattern width 12.45 (5.42)

Table 3: Overview of the 75 Prosite datasets. Fach dataset contains all protein
sequences in SWISS-PROT annotated in the Prosite database as true positives or
false negatives for the Prosite pattern characterizing a given family. Dataset size and
sequence length count the total number of amino acids in the protein sequence(s).

25

features involved in gene regulation. The farn dataset contains isoprenyl-protein
transferases, each with multiple appearances of three motifs.

The E. coli DNA datasets, crp, lex and crplex, are described in detail in [Bailey
and Elkan, 1995a)]. The crp sequences contain binding sites for CRP [Lawrence
and Reilly, 1990], while the lex sequences contain binding sites for LexA; the crplex
dataset is the union of the crp and lex datasets. The E. coli promoter dataset hrp
[Harley and Reynolds, 1987] contains a single motif which consists of two submotifs
with a varying number of positions (usually about 17) between them.

11.2 Prosite datasets.

The 75 Prosite families described in general terms in Table 3 correspond approxi-
mately to the 10% of fixed-width Prosite patterns with worst combined (summed)
recall and precision. Fixed-width patterns such as

D — [SGN] — D — P — [LIVM] — D — [LIVMC]

are a proper subset of the patterns expressible by MEME motifs, and they form a
majority in Prosite. Recall and precision for Prosite patterns and for correspond-
ing MEME motifs were calculated using information in the Prosite database about
matches found when searching the large (36000 sequence) SWISS-PROT database of
protein sequences [Bairoch, 1994]. The actual Prosite signatures for the 75 families
are given in Table 11. Detailed statistics on the families are shown in the Appendix
in Tables 9, 10, 12 and 13.

11.3 Performance of different model types

Table 4 shows the ROC motifs found by MEME in the development datasets when
MEME was run with the motif width set at W < 100 for 5 passes. The first
lines for each of the three model types shows the performance of MEME without
background information—DNA palindromes were not searched for and the one-
component Dirichlet prior was used. As expected, the ZOOPS model type outper-
forms both the OOPS and TCM model types on those datasets which conform to the
ZOOPS assumptions, as seen from the higher values of ROC for the ZOOPS model
type (line 4) compared with the OOPS model type (line 1) for datasets hrp and cr-
plex in Table 4. Accuracy is not sacrificed when all of the sequences contain a motif
occurrence: the performances of the OOPS and ZOOPS model types are virtually
identical on the first four datasets. The TCM model type outperforms the other two
model types on the farn dataset whose sequences contain multiple occurrences of
multiple motifs.

26

model dataset
type OOPS-like ZOOPS-like TCM-like
crp lex hth lip hrp crplex farn

O0PS 0.9798 0.9998 0.9979 1.0000 | 0.9123 0.9615 0.9446
OOPS_PAL 0.9792 1.0000 0.9123 0.9565
OOPS_DMIX 1.0000 1.0000 0.9336
ZOOPS 0.9798 0.9999 0.9992 1.0000 | 0.9244 0.9881 0.9112
ZOOPS_PAL 0.9792 1.0000 0.9244 (0.9867

ZOOPS DMIX 1.0000 1.0000 0.9324
TCM 0.9240 0.9895 0.9888 0.9842 | 0.8772 0.9764 0.9707
TCM_PAL 0.9786 0.9811 0.8772 0.9792
TCM_DMIX 0.9841 0.9952 0.9880
OOPS_GIBBS | 0.9709 1.0000 1.0000 0.9999 | 0.8881 0.9672 0.9291

Table 4: Average ROC of the best motif discovered by MEME for all known motifs
contained in dataset. Highest ROC for each dataset is printed in boldface type.
Blank fields indicate that the model type is not applicable to the dataset.

model dataset
type OOPS-like ZOOPS-like TCM-like
crp lex hth lip hrp crplex farn
R P R P R P R P/R P|R P|R P

OO0PS 79 90 84 100 97 97| 100 83| 42 45| 50 30| 24 90
OOPS_PAL 75 90 | 100 100 42 45| 54 31
OOPS_DMIX 100 97 | 100 92 20 84
ZOOPS 71 89 84 100 97 97| 100 83 | 45 49| 75 62| 23 79
ZOOPS_PAL 75 90 | 100 100 45 49 | 85 79
ZOOPS_DMIX 100 97 | 100 92 22 90
TCM 21 38 84 42 80 21 60 8|29 59|52 31| 53 28
TCM_PAL 79 79 84 43 29 59| 82 54
TCM_DMIX 80 19 90 12 79 44

Table 5: Average percentage precision (P) and recall (R) of the best motif discovered
by MEME++ for all known motifs contained in a given dataset. The best model
for each dataset is printed in boldface. Blank fields indicate that the model type is
not applicable to the dataset.

27

dataset
OOPS-like ZOOPS-like TCM-like
crp lex hth lip hrp crplex farn
known width 20 20| 18|16 16| 29|20 20| 12 12 12
O0PS 15| 18| 15| 5 6| 46|29 18| 7 9 10
OOPS_PAL 16 | 16 46 | 24 24
OOPS_DMIX 18| 7 6 8 16 11
ZOOPS 15| 18| 21| 5 6| 46 |21 18 | 12 12 9
ZOOPS_PAL 16 | 16 46 | 22 20
ZOOPS DMIX 18| 7 6 7 8 12
TCM 11| 11| 10| 8 8| 29|21 12|10 7 10
TCM_PAL 16 9 29 1 20 11
TCM_DMIX 11 7 7 11 7 8

Table 6: Width of the best motif discovered by MEME for all known motifs contained
in dataset. Blank fields indicate that the model type is not applicable to the dataset.
A width in boldface indicates that this model type has the best average ROC for
this dataset.

For comparison, the last line in Table 4 shows the performance of the motifs
discovered using the Gibbs sampler [Lawrence et al., 1993]. The conditions of the
tests were made as close as possible to those for the MEME tests using the OOPS
model type, except that the Gibbs sampler was told the correct width of the motifs
since it requires the user to specificy the width of all motifs. With each Prosite
dataset, the Gibbs sampler was told to search for 5 motifs, each of the width of the
Prosite signature for the family, and that each sequence contained one occurrence
of each motif. It was run with 100 independent starts (10 times the default) to
maximize its chances of finding good motifs. Note that we did not tell either the
Gibbs sampler or MEME how many occurrences of a particular motif a particular
sequence has as was done in [Lawrence et al., 1993].

The ROC of the MEME motifs found using the ZOOPS model type without
background information is as good or better than that of the sampler motifs for five
of seven datasets. The MEME motifs found using the OOPS model type perform as
well or better than those found by the Gibbs sampler with four of the seven datasets.
Note once again that the Gibbs sampler was told the correct motif widths to use,
whereas MEME was not. MEME using the ZOOPS model type does significantly
better than the Gibbs sampler on the two ZOOPS-like datasets.

28

model type ROC recall precision relative width shift

OOPS 0.991 (0.025) | 0.805 (0.356) | 0.751 (0.328) | 1.297 (0.753) | -0.978 (5.608)
OOPS_DMIX 0.992 (0.031) | 0.815 (0.349) | 0.758 (0.325) | 1.210 (0.677) | -0.637 (5.337)
ZO0OPS 0.992 (0.024) | 0.823 (0.335) | 0.775 (0.307) | 1.307 (0.774) | -0.696 (5.575)
ZOOPS_DMIX || 0.993 (0.026) | 0.821 (0.340) | 0.768 (0.314) | 1.220 (0.715) | -0.585 (4.890)

Table 7: Average (standard deviation) performance and width of best motifs found
by MEME in the 75 Prosite datasets. All 135 known motifs contained in the datasets
are considered.

model type ROC recall precision relative width
OOPS_DMIX w < 100 0.971 (0.065) | 0.738 (0.288) | 0.725 (0.310) | 1.170 (0.840)
ZOOPS_ DMIX, w < 100 || 0.960 (0.090) | 0.728 (0.305) | 0.699 (0.327) | 1.141 (0.815)
OOPS DMIX, w =20 0.987 (0.029) | 0.820 (0.211) | 0.840 (0.228) | 1.896 (0.785)
OOPS_GIBBS, w = 20 0.980 (0.053) | 0.781 (0.242) | 0.884 (0.169) | 1.896 (0.785)

Table 8: Average (standard deviation) two-fold cross-validated performance of
MEME and the Gibbs sampler on the 75 Prosite families. The training set con-
sisted of half of the sequences in a given family. The test set consisted of the other
half plus half of the 36000 sequences in SWISS-PROT.

The recall and precision values of the motifs found by MEME on the development
dataset are shown in Table 5.

11.4 The benefit of background knowledge

The efficacy of using the DNA palindrome bias and the Dirichlet mixture prior can
be seen in Table 4. ROC improves in 9 out of 21 cases and stays the same with
another 5. The improvements are substantial in the case of the least constrained
model type, TCM. For five of seven datasets, using the background information
results in the model with the best or equal-best overall ROC.

The LRT-based heuristic does a good job at selecting the “right” width for the
motifs in the seven non-Prosite datasets, especially when the DNA palindrome or
Dirichlet mixture prior background information is used. The widths of the best
motifs found by MEME are shown in Table 6. With background information and
the model type appropriate to the dataset, the motif widths chosen by MEME are
close to the correct widths with the exception of the lip dataset. That dataset is
extremely small and the motifs are faint, which explains why MEME underestimates
their widths.

11.5 Performance on the Prosite datasets

MEME does an excellent job of discovering the Prosite motifs in training sets con-

29

30

29

25

20

14 13

number of motifs (total 75)
10 15

l ‘
1

1 2 3 4 5 72

pass where motif found

Figure 2: The pass where MEME finds the known Prosite motif is shown. MEME
was run for five passes using the OOPS model without any background information.
‘?” means the known motif(s) were not found by MEME within five passes.

sisting of entire families. This is true with both the OOPS and ZOOPS model types
and with or without the background information provided by the Dirichlet mixture
prior. For 91% of the 75 Prosite families, one of the motifs found by MEME run
for five passes using the OOPS model type and the simple prior corresponds to the
known Prosite signature (i.e., identifies the same sites in the dataset). MEME finds
multiple known motifs in many of the Prosite families. The criterion we use for
saying that a MEME motif identifies a known Prosite pattern is that it have ROC of
at least 0.99. MEME usually discovers the known motifs on early passes, as shown
in Figure 1.

Of the 75 Prosite families we studied, 45 significantly overlap other families.
We define significant overlap to mean two families share five or more sequences in
common. If we include the motifs contained in these overlapping families, there are
135 known motifs present in the 75 Prosite family datasets. The overlapping Prosite
families we studied are described in more detail in Table 14. When run for 5 passes
using the OOPS model type with the simple Dirichlet prior, MEME discovers 112 of
these known motifs. The ZOOPS model type does better, discovering 117 of the 135
motifs. With the Dirichlet mixture prior, MEME does even better, discovering 119
out of 135 known motifs using either the OOPS or ZOOPS model types.

Small improvements are seen in the performance of MEME motifs discovered in

30

the Prosite datasets when the Dirichlet mixture prior is used. This is especially true
for the datasets containing few (under 20) sequences. For the 36 Prosite datasets
we used which meet this criterion and would thus be most likely to benefit from the
background information contained in the Dirichlet mixture prior, the improvement
in ROC is statistically significant at the 5% level for the OOPS model type according
to a paired t-test. The motifs discovered using the ZOOPS model type are slightly
superior to those found with the OOPS model type. Table 7 shows the average
performance results on the Prosite datasets when MEME is run for five passes with
various model types, with or without Dirichlet priors, and required to choose the
motif width in the range 5 < W < 100. The performance values are for all 135
known motifs contained in the 75 datasets, as described above. The difference in
ROC between the OOPS and ZOOPS model types when the simple Dirichlet prior
is used is significant at the 5% level. When the Dirichlet mixture prior is used, the
difference in ROC between the two model types is not statistically significant. For
both model types, whether or not the Dirichlet mixture prior is used does not make
a statistically significant difference in the ROC of the discovered motifs.

The MEME motifs are extremely similar to the Prosite signatures. In general,
they identify almost exactly the same positions in the sequences in the families.
This fact can be seen in Table 7 from the high ROC, relative width close to 1, and
small shift of the MEME motifs.

11.6 Generalization

Cross-validation experiments show that the motifs discovered by MEME on the
Prosite datasets can be expected to correctly identify new members of the pro-
tein families. Table 8 shows the results of 2-fold cross-validation experiments on the
75 Prosite families using MEME and the Gibbs sampler. The first two lines of the
table show the results when MEME is forced to choose the motif width. The per-
formance of the OOPS model type is slightly better than that of the ZOOPS model
type (ROC better at 5% significance level). Performance is better if MEME is given
background information in the form of being told a good width (W = 20), as seen
in the third line in Table 8.5 Then the generalization performance (cross-validated
ROC) of the MEME motifs is better than that of sampler motifs at the 5% signifi-
cance level. In these experiments, both MEME and the Gibbs sampler were allowed
to generate only one motif per training set. The Gibbs sampler was instructed to
use motif width W = 20 and 250 (25 times the default) independent starts to ensure

5As can be seen in Table 3, the average width of the known motifs is about 12 with a standard
deviation of about 5, so a motif width of 20 is a good compromise between the need to capture all
the information in the motif and avoiding including too many uninformative columns.

31

that the two algorithms got approximately the same number of CPU cycles. The
performance figures in Table 8 are based on the number of hits scored on sequences
in SWISS-PROT known to be in the family, and do not require the hit to be at
any particular position within the sequence. We used a threshold of 18 bits for
determining if scores were hits.”

A direct comparison of the predicted generalization performance of motifs dis-
covered by learning algorithms such as MEME and the Gibbs sampler with that
of the Prosite signatures is not possible. The Prosite signatures were created by
hand and cannot easily be cross-validated, so their generalization performance is
not known. However, the average performance of the Prosite signatures on their
own training sets, ROC = 0.99(0.02), is the same as the cross-validated performance
of the MEME OOPS-model motifs found when the algorithm is given a hint about
the width of the motifs. This is impressive since the MEME motifs were learned
from only half of the members of the families so the cross-validated ROC is likely
to be an underestimate of the actual ROC of the motifs. The non-cross-validated
estimate of the Prosite signature performance is likely to overestimate their actual
performance on new sequences.

"The threshold of 18 bits was chosen based on there being 36000 sequences of average length
347 in SWISS-PROT release 27. There are 38 occurrences on average of each Prosite motif out
of the approximately 347 x 36000 a2 107 possible occurrences in SWISS-PROT. The average motif
frequency is therefore A ~ 38/10” and a reasonable threshold is log, % = 18 bits.

32

References

[Abramowitz and Stegun, 1972] Milton Abramowitz and Irene A. Stegun, editors.
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical
Tables. Dover Publications, Inc., 1972.

[Bailey and Elkan, 1994] Timothy L. Bailey and Charles Elkan. Fitting a mixture
model by expectation maximization to discover motifs in biopolymers. In Proceed-
ings of the Second International Conference on Intelligent Systems for Molecular
Biology, pages 28-36. AAAI Press, 1994.

[Bailey and Elkan, 1995a] Timothy L. Bailey and Charles Elkan. Unsupervised
learning of multiple motifs in biopolymers using EM. Machine Learning, 1995. In
press.

[Bailey and Elkan, 1995b] Timothy L. Bailey and Charles Elkan. The value of prior
knowledge in discovering motifs with MEME. Technical Report CS95-413, De-
partment of Computer Science, University of California, San Diego, February
1995.

[Bairoch, 1994] Amos Bairoch. The SWISS-PROT protein sequence data bank:
current status. Nucleic Acids Research, 22(17):3578-3580, September 1994.

[Brown et al., 1993] Michael Brown, Richard Hughey, Anders Krogh, I. Saira Mian,
Kimmen Sjolander, and David Haussler. Using Dirichlet mixture priors to derive
hidden Markov models for protein families. In Intelligent Systems for Molecular
Biology, pages 47-55. AAAI Press, 1993.

[Dayhoff et al., 1983] Margaret O. Dayhoff, Winona A. Barker, and Lois T. Hunt.
Establishing homologies in protein sequences. Methods in Enzymology, 91:524—
545, 1983.

[Dempster et al., 1977] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, 39(1):1-38, 1977.

[Harley and Reynolds, 1987] C. B. Harley and R. P. Reynolds. Analysis of E. coli
promoter sequences. Nucleic Acids Research, 15:2343-2361, 1987.

[Kendall et al., 1983] Sir Maurice Kendall, Alan Stuart, and J. Keith Ord. The
Advanced Theory of Statistics. Charles Griffin & Company Limited, 1983.

33

Prosite width number number minimum maximum mean total

accession of of of sequence sequence sequence dataset
number signature sites sequences length length length size
PS00030 8 98 59 157 713 411.8 24297
PS00037 9 35 18 151 811 492.9 8872
PS00038 15 83 90 133 710 364.3 32786
PS00043 22 10 10 236 254 241.6 2416
PS00060 19 5 7 370 890 453.6 3175
PS00061 11 81 82 201 906 275.3 22577
PS00070 12 32 34 140 902 500.9 17029
PS00075 9 33 33 35 608 213.8 7054
PS00077 5 53 53 109 698 454.5 24088
PS00079 21 18 12 548 2351 978.2 11738
PS00092 7 35 35 228 997 429.0 15015
PS00095 19 29 33 309 1502 471.8 15571
PS00099 12 13 14 387 547 418.3 5856
PS00118 8 108 110 39 162 125.6 13821
PS00120 10 31 36 277 690 426.6 15357
PS00133 11 19 19 303 477 408.9 7769
PS00141 6 87 50 52 587 384.1 19204
PS00144 9 8 8 26 348 287.4 2299
PS00158 8 17 20 349 394 364.4 7287
PS00180 5 52 55 72 729 399.4 21966
PS00185 10 9 10 311 338 328.8 3288
PS00188 10 15 15 70 2345 951.3 14270
PS00190 6 265 223 35 596 142.4 31752
PS00194 7 63 48 45 645 230.5 11063
PS00198 12 148 109 38 793 144.8 15784
PS00209 20 11 14 623 759 677.2 9481
PS00211 12 122 119 163 1548 567.2 67499
PS00215 9 88 39 286 436 330.9 12906
PS00217 26 42 46 220 884 517.4 23800
PS00225 16 165 47 30 252 179.6 8441
PS00281 8 23 22 53 133 74.0 1629
PS00283 17 29 30 20 221 175.4 5263
PS00287 12 38 32 98 644 244.8 7834
PS00301 13 105 110 389 858 527.4 58015
PS00338 18 83 86 85 267 211.0 18145
PS00339 10 31 38 201 967 518.7 19710
PS00340 7 23 37 292 897 529.0 19574
PS00343 6 24 25 369 1902 887.1 22177

Table 9: Characteristics of the individual Prosite datasets (continued in next table).
Prosite families are identified by their accession number in the Prosite databse. The
width of the Prosite signature, the nunsbfr of known sites, the size of the family
(number of sequences), length of shortest and longest sequence, average length of
sequences and total size of sequences are shown. The sequences in the family include
members missed by the Prosite signature, but the known sites are just those sites
identified by the Prosite signature. Since sequences may have multiple sites, the
number of sites sometimes exceeds the number of sequences.

Prosite width number number minimum maximum mean total

accession of of of sequence sequence sequence dataset
number signature sites sequences length length length size

PS00372 5 7 7 59 637 304.3 2130
PS00399 6 4 4 288 1100 502.5 2010
PS00401 13 5 5 311 352 336.0 1680
PS00402 29 32 39 147 514 303.6 11842
PS00422 10 11 12 446 677 562.2 6747
PS00435 11 38 41 158 933 471.8 19345
PS00436 12 31 40 292 933 479.7 19187
PS00490 18 7 9 684 1246 909.9 8189
PS00548 16 15 18 209 562 282.6 5086
PS00589 16 10 10 85 827 191.7 1917
PS00599 10 20 21 356 642 451.5 9482
PS00606 17 20 17 401 3567 1438.2 24449
PS00624 15 7 9 546 664 596.4 5368
PS00626 11 22 6 421 547 472.3 2834
PS00637 12 8 9 190 409 360.6 3245
PS00639 11 53 62 73 1597 402.3 24944
PS00640 20 52 62 73 1597 402.3 24944
PS00643 11 4 5 233 744 620.6 3103
PS00656 9 5) 388 471 438.0 2190
PS00659 10 38 40 343 1331 550.7 22027
PS00675 14 30 36 302 938 508.1 18293
PS00676 16 29 36 302 938 508.1 18293
PS00678 15 7 26 317 788 457.0 11883
PS00687 8 30 33 430 902 511.8 16889
PS00697 9 11 11 346 919 567.6 6244
PS00700 14 12 13 101 193 177.0 2301
PS00716 27 31 36 125 708 341.3 12288
PS00741 26 5 6 736 1271 977.7 5866
PS00760 11 5 8 167 324 230.2 1842
PS00761 14 8 8 167 324 230.2 1842
PS00831 18 5 6 84 371 158.2 949
PS00850 9 4 4 605 765 710.2 2841
PS00867 8 28 20 398 2345 1465.0 29301
PS00869 9 5 5 409 411 410.0 2050
PS00881 6 3 3 790 1702 1187.7 3563
PS00904 10 20 4 290 377 330.8 1323
PS00933 13 11 11 454 709 507.9 5587
mean 12 38 34 256 841 463 12945

sd 5 44 36 180 585 270 11922

Table 10: Characteristics of the individual Prosite datasets (continued from previous
table). The sample mean and standard d%%iations of each of the quantities are shown
at the bottom.

accession

signature

number

PS00030 [RK]-G-{EDRKHPCG}-[AGSCI]-[FY]-[LIVA]-x-[FYM].

PS00037 W-[ST]-x(2)-E-[DE]-x(2)-[LIV].

PS00038 K-[LIVMAG]-x-[1T]-[IL]-x(2)-[STAV]-x(2)-[YHV]-[LIVMA]-x(2)-[LIVM].

PS00043 E-x(2)-[LIVM]-x(3)-[LIVMF]-x-[LIVMF]-[NSTK]-R-x(2)-[LIVM]-x(3)-[LIVM]-x(2)-L.

PS00060 G-x(2)-H-x(2)-A-H-x(2)-G-x(5)-P-H-G.

PS00061 Y-[PSTAGCV]-[STAGCIV]-[STAGC]-K-x-[SAG]-[LIVMAG]-x(2)-[LIVMF].

PS00070 [FYV]-x(3)-G-[QE]-x-C-[LIVMGSTNC]-[AGCN]-x-[GSTDNE].

PS00075 [LIF]-G-x(4)-[LIVMF]-P-W.

PS00077 W-x-H-H-[LMF].

PS00079 G-x-[FYW]-x-[LIVMFYW]-x-[CST]-x(8)-G-[LM]-x(3)-[LIVMFYW].

PS00092 [LIVMAC]-[LIVMFYA]-x-[DN]-P-P-[FY].

PS00095 [RKQTF]-x(2)-G-N-[STAG]-[LIVM]-x(3)-[LIVM]-x(3)-[LIVM]-x(3)-[LIVM].

PS00099 [AG]-[LIVMA]-x-[STAG]-x-C-x-G-x-G-x-[AG].

PS00118 C-C-x(2)-H-x(2)-C.

PS00120 [LIV]-x-[LIVFY]-[LIVST]-G-[HYWV]-S-x-G-[GSTAC].

PS00133 H-[STAG]-x(3)-[LIVM]-x(2)-[LIVMFYW]-P-[FYW].

PS00141 [LIVFA]-D-T-G-[STA]-[STAPN].

PS00144 [LIVM]-x(2)-T-G-G-T-I-[AG].

PS00158 E-G-x-[LS]-L-K-P-N.

PS00180 [FYW]-D-G-S-S.

PS00185 [RK]-x-[STA]-x(2)-S-x-C-Y-[SL].

PS00188 [LIVM]-x-[AV]-M-K-[MA]-x(3)-[LIVM].

PS00190 C-{CPWHF}-{CPWR}-C-H-{CFYW}.

PS00194 [STA]-x-[WG]-C-[AGV]-[PH]-C.

PS00198 C-x(2)-C-x(2)-C-x(3)-C-[PEG].

PS00209 Y-[FYW]-x-E-D-[LIVM]-x(2)-N-x(6)-H-x(3)-P.

PS00211 [LIVMFY]-S-[SAG]-G-x(3)-[RKA]-[LIVMYA]-x-[LIVMF]-[SAG].

PS00215 P-x-[DE]-x-[LIVAT]-[RK]-x-[LRH]-[LIVMFY].

PS00217 [LIVMF]-x-G-[LIVMFA]-x(2)-G-x(8)-[LIFY]-x(2)-[EQ]-x(6)-[RK].

PS00225 [LIVMFYWA]-x-{DEHRKSTP}-[FY]-[DEQHKY]-x(3)-[FY]-x-G-x(4)-[LIVMFCST].

PS00281 C-x-[SAD]-[STA]-C-x(2)-C.

PS00283 [LIVM]-x-D-x-[EDNTY]-[DG]-[RKHDENQ]-x-[LIVM]-x(5)-Y-x-[LIVM].

PS00287 Q-[LIVT]-V-[SAG]-G-x(2)-[LIVMFY]-x-[LIVMFY]-x-[LIVMFY].

PS00301 D-x(4)-E-x(3)-[GC]-x-T-[IV].

PS00338 C-[LIVMFY]-x(2)-D-[LIVMFYSTA]-x(5)-[LIVMFY]-x(2)-[LIVMFY]-x(2)-C.

PS00339 [GSTALVF]-{ DENQHRKP}-[GSTA]-[LIVMF]-[DE]-R-[LIVMF]-x-[LIVMSTAG]-[LIVMFY].

PS00340 [STGL]-x-W-[SG]-x-W-S.

PS00343 L-P-x-T-G-[STGAVDE].

PS00372 [LIVM]-P-H-G-T.

PS00399 [LIVMF]-G-H-A-G-A.

PS00401 K-x-[NQEK]-[GT]-G-[DQ]-x-[LIVM]-x(3)-Q-S.

PS00402 [LIVMFY]-x(8)-[EQR]-[STA]-[STAG]-x(3)-G-[LIVMFYSTAC]-x(5)-[LIVMFYSTA]-x(4)-[LIVMFY]-[PKR].

PS00422 [DE]-[SN]-L-[SAN]-x(2)-[DE]-x-E-L.

PS00435 [DET]-[LIVMTA]-x(2)-[LIVM]-[LIVMSTAG]-[SAG]-[LIVMSTAG]-H-[STA]-[LIVMFY].

PS00436 [SGATV]-x(3)-[LIVMA]-R-[LIVMA]-x-[FW]-H-x-[SAC].

PS00490 [STA]-x-[STAC](2)-x(2)-[STA]-D-[LIVM](2)-L-P-x-[STAC](2)-x(2)-E.

PS00548 [LIVMF]-[RE]-x-G-x(2)-[KRQ]-x(3)-[DNS]-x(2)-[FYW]-[SAV]-[NQDE].

PS00589 [GA]-[KR]-x(4)-[KR]-S-[LIVMF](2)-x-[LIVM]-x(2)-[LIVM]-[GA].

PS00599 T-[LIVMFYW]-[SAG]-K-[SAG]-[LIVMFYW]-[GA]-x(2)-[SAG].

PS00606 G-x(4)-[LIVMAP]-x(2)-[AGC]-C-[STA](2)-[STAG]-x(3)-[LIVMF].

PS00624 G-[STA]-x(2)-[ST]-P-x-[LIVM](2)-x(2)-S-G-[LIVM]-G.

PS00626 [LIVMFA]-[STAGC](2)-G-x(2)-H-[STAGLI]-[LIVMFA]-x-[LIVM].

PS00637 C-x(2)-C-x-G-x-G-[AGS]-x(2)-G.

PS00639 [LIVMGSTAN]-x-H-[GSA]-[LIVM]-x-[LIVMAT](2)-G-x-[GSNH].

PS00640 [FY]-[WI]-[LIVT]-x-[KRQAG]-N-[ST]-W-x(3)-[FYW]-G-x(2)-G-[FYW]-[LIVMFY G]-x-[LIVMF].

PS00643 R-C-[LIVM]-x-C-x-R-C-[LIVM]-x-F.

PS00656 [LIVMFY]-[LIV](3)-E-P-D-x-[LIV].

PS00659 [LIV]-[LIVMFYWGA](2)-[DNEG]-[LIVMGST]-x-N-E-[PV]-[RHDNSTLIVFY].

PS00675 [LIVMFY](3)-x-G-[DE]-[ST]-G-[ST]-G-K-x(2)-[LIVMFY].

PS00676 G-x-[LIVMF]-x(2)-A-[DNEQASH]-G-G-[STI]-[LIVMFY](3)-D-E-[LIVM].

PS00678 [LIVMSTAC]-[LIVMFYWSTAGC]-[LIMSTAG]-[LIVMSTAGC]-x(2)-[DN]-x(2)-[LIVMWSTAC]-x-[LIVMFSTAG]
-W-[DEN]-[LIVMFSTAGCN].

PS00687 [LIVMFG]-E-[ILSTA]-[GS]-G-[KN]-[SAN]-[TAPF].

PS00697 [EDQH]-x-K-x-[DN]-G-x-R-[GACV].

PS00700 G-x-[DNS]-x-[QE]-x-[LIVM]-[GST]-[NQEDKR]-x-[AC]-A-x-[LIVM].

PS00716 [STN]-x(2)-[DEQ]-[LIVM]-[GAS]-x(4)-[LIVMF]-[STG]-x(3)-[LIVMA]-x-[NQR]-[LIVMA]-[EQH]-x(3)-[LIVM]-x(2)-[LIVM].

PS00741 L-x(2)-[LIVMFYW]-L-x(2)-P-[LIVM]-x(2)-[LIVM]-x-[KRS]-x(2)-L-x-[LIVM]-x-[DE]-[LIVM]-x(3)-[ST].

PS00760 K-R-[LIVMSTA](2)-G-[LIVM]-P-G-D-x-[LIVM].

PS00761 [LIVMFYW](2)-x(2)-G-D-N-x(3)-[SND]-x(2)-[SG].

PS00831 R-Q-R-G-T-K-x(3)-G-x-N-V-G-x-G-x-D.

PS00850 [STIV]-x-R-[VT]-[CSA]-G-Y-x-[GAV].

PS00867 [LIVMF]-[LIN]-E-[LIVMCA]-N-[PATLIVM]-[KR]-[LIVMSTAC].

PS00869 G-V-E-G-G-H-x-I-D.

PS00881 [LIVM](2)-V-H-N-[STC].

PS00904 [PSIAV]-x-[NDFV]-[NEQIY]-x-[LIVMAGP]-W, @QSTHF] -[FYHQ]-[LIVMR].

PS00933 [LIVMFYGST]-x-[PST]-x(2)-K-[LIVMFYW] 3 [LIVMF]-x-[DENR]-[ENH].

Table 11: Prosite signatures of the 75 Prosite families.

Prosite recall precision true false false
accession positives positives negatives
number (tp) (fp) (fn)
PS00030 0.9322 0.7639 55 17 4
PS00037 1.0000 0.4186 18 25 0
PS00038 0.9222 0.7905 83 22 7
PS00043 1.0000 0.7692 10 3 0
PS00060 0.7143 1.0000) 0 2
PS00061 0.9634 0.7524 79 26 3
PS00070 0.9412 0.8205 32 7 2
PS00075 1.0000 0.6600 33 17 0
PS00077 1.0000 0.8154 53 12 0
PS00079 0.9167 0.6111 11 7 1
PS00092 0.9714 0.8095 34 8 1
PS00095 0.8788 0.8529 29 5 4
PS00099 0.9286 0.6842 13 6 1
PS00118 0.9818 0.9153 108 10 2
PS00120 0.8611 0.7561 31 10)
PS00133 1.0000 0.6786 19 9 0
PS00141 0.9800 0.5904 49 34 1
PS00144 1.0000 0.7273 8 3 0
PS00158 0.8500 1.0000 17 0 3
PS00180 0.9455 0.8125 52 12 3
PS00185 0.9000 0.9000 9 1 1
PS00188 1.0000 0.7500 15 5 0
PS00190 0.9821 0.5601 219 172 4
PS00194 1.0000 0.7869 48 13 0
PS00198 0.9541 0.8814 104 14 5
PS00209 0.7857 1.0000 11 0 3
PS00211 0.8908 0.8760 106 15 13
PS00215 0.9744 0.1929 38 159 1
PS00217 0.9130 0.6000 42 28 4
PS00225 1.0000 0.3013 47 109 0
PS00281 1.0000 0.5946 22 15 0
PS00283 0.9667 0.7632 29 9 1
PS00287 0.8750 0.7568 28 9 4
PS00301 0.9459 0.8468 105 19 6
PS00338 0.9651 0.8830 83 11 3
PS00339 0.8158 0.3163 31 67 7
PS00340 0.6216 0.5000 23 23 14
PS00343 0.9600 0.1875 24 104 1

Table 12: Performance of the individual Prosite signatures.

37

Prosite recall precision true false false
accession positives positives negatives
number (tp) (fp) (fn)

PS00372 1.0000 0.3684 7 12 0
PS00399 1.0000 0.8000 4 1 0
PS00401 0.8333 1.0000) 0 1
PS00402 0.8205 0.7273 32 12 7
PS00422 0.9167 0.7333 11 4 1
PS00435 0.9268 0.8261 38 8 3
PS00436 0.7750 0.9118 31 3 9
PS00490 0.7778 1.0000 7 0 2
PS00548 0.8333 0.8824 15 2 3
PS00589 1.0000 0.8333 10 2 0
PS00599 0.9524 0.7692 20 6 1
PS00606 1.0000 0.8095 17 4 0
PS00624 0.7778 1.0000 7 0 2
PS00626 1.0000 0.2000 6 24 0
PS00637 0.8889 0.8000 8 2 1
PS00639 0.8548 0.7681 53 16 9
PS00640 0.8387 1.0000 52 0 10
PS00643 0.8000 1.0000 4 0 1
PS00656 1.0000 0.6250) 3 0
PS00659 0.9500 0.8636 38 6 2
PS00675 0.8333 1.0000 30 0 6
PS00676 0.8056 1.0000 29 0 7
PS00678 1.0000 0.3377 26 51 0
PS00687 0.9091 0.8333 30 6 3
PS00697 1.0000 0.7333 11 4 0
PS00700 0.9231 0.9231 12 1 1
PS00716 0.8378 0.9688 31 1 6
PS00741 0.8333 1.0000) 0 1
PS00760 0.6250 1.0000) 0 3
PS00761 1.0000 0.7273 8 3 0
PS00831 0.8333 1.0000) 0 1
PS00850 1.0000 0.8000 4 1 0
PS00867 1.0000 0.7407 20 7 0
PS00869 1.0000 0.8333) 1 0
PS00881 1.0000 0.7500 3 1 0
PS00904 1.0000 0.3333 4 8 0
PS00933 1.0000 0.7857 11 3 0
mean 0.92 0.75 31.09 15.97 2.48

sd 0.09 0.21 34.31 31.65 3.12

Table 13: Performance of the individual Prosite signatures (continued).

38

1]

=

X Y L % Y L Y i &
PS00037 || PS00334 17 0.94 0.94
PS00060 || PS00913 7 100 1.00
PS00070 || PS00687 33 0.97 1.00
PS00079 || PS00080 9 075 1.00
PS00095 || PS00094 33 1.00 0.92
PS00099 || PS00737 14 1.00 1.00 | PS00098 14 1.00 1.00
PS00118 || PS00119 109 0.99 1.00
PS00133 || PS00132 19 1.00 1.00
PS00144 || PS00917 7 0.88 1.00
PS00180 || PS00181 53 0.96 0.98 | PS00182 17 0.31 1.00
PS00185 || PS00186 10 1.00 1.00
PS00188 || PS00867 8 0.53 0.40 | PS00866 8 0.53 0.40
PS00194 || PSO0014 12 025 0.26
PS00198 || PS00197 6 0.06 0.07
PS00209 || PS00210 14 1.00 1.00 | PS00498 7 0.50 0.37
PS00217 || PS00216 46 1.00 1.00
PS00338 || PS00266 84 0.98 1.00
PS00339 || PS00179 38 1.00 1.00
PS00340 || PS00241 37 1.00 1.00
PS00401 || PS00757 5 1.00 1.00
PS00422 || PS00423 8 0.67 1.00
PS00435 || PS00436 40 0.98 1.00
PS00436 || PS00435 40 1.00 0.98
PS00490 || PS00551 9 1.00 1.00 | PS00932 9 1.00 1.00
PS00548 || PS00734 18 1.00 1.00
PS00589 || PS00369 10 1.00 0.83
PS00606 || PS00012 8 047 0.20
PS00624 || PS00623 9 1.00 1.00
PS00626 || PS00625 6 1.00 1.00
PS00637 || PS00636 9 1.00 0.53
PS00639 || PS00139 59 0.95 0.91 | PS00640 62 1.00 1.00 | PS00018 6 0.10 0.03
PS00640 || PS00139 59 0.95 0.91 | PS00639 62 1.00 1.00 | PS00018 6 0.10 0.03
PS00643 || PS00641 5 1.00 1.00 | PS00642 5 1.00 1.00
PS00656 || PS00655 5 1.00 1.00
PS00659 || PS00448 6 0.15 0.55
PS00675 || PS00676 36 1.00 1.00 | PS00688 36 1.00 1.00
PS00676 || PS00675 36 1.00 1.00 | PS00688 36 1.00 1.00
PS00687 || PS00070 33 1.00 0.97
PS00697 || PS00333 11 1.00 1.00
PS00700 || PS00525 13 1.00 0.93
PS00716 || PS00715 35 0.97 0.97
PS00760 || PS00501 8 1.00 1.00 | PSO0761 8 1.00 1.00
PS00761 || PS00760 8 1.00 1.00 | PSO0501 8 1.00 1.00
PS00867 || PS00188 8 040 0.53 | PS00866 20 1.00 1.00
PS00933 || PS00445 11 1.00 1.00

Table 14: Prosite families with at least 5 sequences in common with other Prosite
families are shown. Families in the set of 75 which overlap significantly with other
Prosite families are listed in the leftmost column (family X). The degree of overlap
with some other Prosite family (family Y), given as the number of sequences in
common (|I| = |X NY]) divided by the number of sequences in family X or family
Y, is shown in succeeding columns.

39

accession site-level sequence-level
number pass W ROC recall precision pass w ROC recall precision

PS00030 1 8 0.999900 0.990 0.890 1 8 0.999880 1.000 0.204
PS00037 3 20 0.999800 0.714 1.000 4 21 1.000000 1.000 0.900
PS00038 1 12 0.999900 1.000 0.922 1 12 0.999950 1.000 0.511
PS00043 1 21 1.000000 1.000 1.000 1 21 1.000000 1.000 0.357
PS00060 2 9 1.000000 1.000 0.714 1 21 1.000000 1.000 0.636
PS00061 1 16 0.999900 1.000 0.964 1 16 0.999980 1.000 0.804
PS00070 4 13 1.000000 1.000 0.941 4 13 1.000000 1.000 0.523
PS00075 3 18 1.000000 1.000 1.000 3 18 1.000000 1.000 0.971
PS00077 3 14 1.000000 1.000 1.000 2 11 0.999950 1.000 0.855
PS00079 1 10 0.997000 0.556 0.769 1 10 1.000000 1.000 0.140
PS00092 1 9 1.000000 1.000 0.946 1 9 0.999960 1.000 0.174
PS00095 4 20 0.961500 0.000 0.000 3 14 0.999940 1.000 0.579
PS00099 4 37 0.951700 0.000 0.000 1 21 1.000000 1.000 0.824
PS00118 1 11 1.000000 1.000 0.982 1 11 0.999960 1.000 0.965
PS00120 1 10 1.000000 1.000 0.861 1 10 0.999950 1.000 0.201
PS00133 4 15 1.000000 1.000 1.000 1 10 1.000000 1.000 0.188
PS00141 1 10 0.999600 0.563 0.980 2 24 0.999990 0.940 0.959
PS00144 3 8 1.000000 1.000 1.000 1 18 1.000000 1.000 0.571
PS00158 5 11 0.977200 0.000 0.000 1 28 1.000000 1.000 1.000
PS00180 2 9 1.000000 0.981 0.944 1 10 0.999960 0.982 0.574
PS00185 3 13 1.000000 1.000 0.900 1 25 1.000000 1.000 0.909
PS00188 1 20 1.000000 1.000 1.000 1 20 0.999970 1.000 0.750
PS00190 1 5 1.000000 1.000 0.971 1 5 0.999260 1.000 0.088
PS00194 1 5 1.000000 1.000 1.000 1 5 0.999860 1.000 0.072
PS00198 1 12 0.999900 0.993 0.850 1 12 0.999980 1.000 0.852
PS00209 4 23 1.000000 1.000 0.786 1 28 1.000000 1.000 1.000
PS00211 2 15 1.000000 0.992 0.858 2 15 0.999730 1.000 0.788
PS00215 1 10 0.999700 0.670 0.894 4 29 0.999980 1.000 0.929
PS00217 2 15 1.000000 1.000 0.875 2 15 1.000000 1.000 0.730
PS00225 2 13 0.999400 0.503 0.965 2 13 0.999990 1.000 0.627
PS00281 2 10 1.000000 1.000 1.000 4 10 0.999990 1.000 0.095
PS00283 1 15 0.999900 1.000 0.933 1 15 0.999990 1.000 0.423
PS00287 1 8 1.000000 1.000 0.884 2 11 0.999990 1.000 0.235
PS00301 3 8 1.000000 0.990 0.945 4 16 0.999930 1.000 0.925
PS00338 1 19 1.000000 1.000 0.976 2 16 0.999870 0.988 0.876
PS00339 1 15 1.000000 1.000 0.816 2 20 0.999980 1.000 0.422
PS00340 1 8 0.999900 1.000 0.548 1 8 0.999950 1.000 0.168
PS00343 1 13 0.999800 0.750 0.667 3 20 0.999980 1.000 0.439
PS00372 1 14 0.999800 0.857 0.750 2 22 1.000000 1.000 0.368
PS00399 2 8 1.000000 1.000 1.000 1 9 1.000000 1.000 0.004
PS00401 3 9 1.000000 1.000 1.000 1 17 1.000000 1.000 0.455
PS00402 1 20 0.999900 1.000 0.821 1 20 0.999980 1.000 0.619
PS00422 3 26 0.979800 0.727 0.667 2 22 1.000000 1.000 0.923
PS00435 3 12 1.000000 1.000 0.905 4 15 0.999990 1.000 0.291
PS00436 1 8 1.000000 1.000 0.775 5 15 0.999990 1.000 0.303
PS00490 2 25 1.000000 1.000 0.700 1 25 1.000000 1.000 0.900
PS00548 2 22 0.988700 0.867 0.722 1 48 1.000000 1.000 1.000
PS00589 2 24 1.000000 1.000 1.000 1 41 1.000000 1.000 1.000
PS00599 1 14 1.000000 1.000 0.952 1 14 1.000000 1.000 0.429
PS00606 4 36 1.000000 1.000 1.000 1 20 1.000000 1.000 1.000
PS00624 4 14 0.977200 0.000 0.000 1 26 1.000000 1.000 1.000
PS00626 4 28 0.991300 0.409 0.692 1 11 1.000000 1.000 0.051
PS00637 3 8 0.998700 0.875 0.304 5 21 1.000000 1.000 0.173
PS00639 3 11 1.000000 1.000 0.883 2 8 0.999860 0.984 0.436
PS00640 2 8 1.000000 1.000 0.852 2 8 0.999860 0.984 0.436
PS00643 3 11 1.000000 1.000 0.800 1 23 1.000000 1.000 0.714
PS00656 2 7 0.971400 0.000 0.000 1 10 1.000000 1.000 0.017
PS00659 1 10 1.000000 0.973 0.900 3 14 0.999980 1.000 0.377
PS00675 4 15 1.000000 1.000 0.833 5 26 1.000000 1.000 0.973
PS00676 5 26 0.999900 1.000 0.806 5 26 1.000000 1.000 0.973
PS00678 3 21 0.997700 0.519 0.645 1 29 0.999990 1.000 0.703
PS00687 3 20 1.000000 1.000 0.909 3 20 1.000000 1.000 0.917
PS00697 1 14 1.000000 1.000 1.000 5 14 0.999990 1.000 0.097
PS00700 2 16 1.000000 1.000 0.923 2 16 1.000000 1.000 0.153
PS00716 4 28 1.000000 1.000 0.857 2 17 0.999840 1.000 0.783
PS00741 1 15 1.000000 1.000 0.714 1 15 1.000000 1.000 0.122
PS00760 3 21 0.999800 1.000 0.625 1 8 1.000000 1.000 0.007
PS00761 2 13 1.000000 1.000 1.000 1 8 1.000000 1.000 0.007
PS00831 1 8 1.000000 1.000 0.833 2 9 1.000000 1.000 0.006
PS00850 4 7 0.983500 0.000 0.000 2 10 1.000000 1.000 0.007
PS00867 2 25 1.000000 0.893 0.962 1 21 1.000000 1.000 0.909
PS00869 3 12 0.994100 0.000 0.000 1 56 1.000000 1.000 1.000
PS00881 1 5 1.000000 1.000 0.750 4 5 0.999870 1.000 0.004
PS00904 2 8 0.999800 0.650 1.000 1 8 1.000000 1.000 0.010
PS00933 4 44 1.000000 1.000 1.000 1 13 1.000000 1.000 0.153

Table 15: W < 100, OOPS model, simple Dirichlet prior, training set is entire
family. The table shows detailed performance results for the 75 Prosite families.
Shown is the Prosite accession number of the family, the pass of MEME++ when
the best motif was found, the width chosen by MEME++ for the motif, and the
ROC, recall and precision of the best motif.

40

accession site-level sequence-level

number pass W ROC recall precision pass w ROC recall precision
PS00030 1 8 0.999900 0.990 0.815 1 8 0.999890 1.000 0.165
PS00037 3 17 1.000000 0.714 1.000 4 21 1.000000 1.000 0.857
PS00038 1 12 0.999900 1.000 0.922 1 12 0.999950 1.000 0.409
PS00043 1 21 1.000000 1.000 1.000 1 21 1.000000 1.000 0.179
PS00060 1 30 1.000000 1.000 0.714 1 30 0.999990 1.000 0.583
PS00061 1 16 0.999900 1.000 0.964 1 16 0.999980 1.000 0.845
PS00070 4 28 1.000000 1.000 0.941 4 28 0.999980 1.000 0.919
PS00075 3 10 1.000000 1.000 1.000 3 10 1.000000 1.000 0.189
PS00077 3 14 1.000000 1.000 1.000 4 22 0.999940 1.000 0.883
PS00079 1 10 0.999100 0.556 0.769 4 15 1.000000 1.000 0.207
PS00092 1 7 1.000000 1.000 0.946 1 7 0.999930 1.000 0.088
PS00095 2 20 0.910200 0.000 0.000 3 14 0.999940 1.000 0.440
PS00099 3 28 0.943000 0.000 0.000 4 37 1.000000 1.000 0.519
PS00118 1 11 1.000000 1.000 0.982 1 11 0.999960 1.000 0.973
PS00120 1 10 1.000000 1.000 0.861 1 10 0.999910 1.000 0.137
PS00133 3 13 1.000000 1.000 1.000 1 10 1.000000 1.000 0.170
PS00141 1 10 0.999500 0.563 0.980 1 10 0.999980 1.000 0.926
PS00144 3 7 1.000000 1.000 1.000 3 7 0.999990 1.000 0.009
PS00158 3 11 0.993400 0.000 0.000 1 28 1.000000 1.000 1.000
PS00180 2 6 1.000000 1.000 0.945 1 10 0.999940 0.982 0.783
PS00185 1 13 1.000000 1.000 0.900 1 13 1.000000 1.000 0.323
PS00188 1 13 1.000000 1.000 1.000 1 13 0.999970 1.000 0.625
PS00190 1 5 1.000000 1.000 0.960 1 5 0.999240 1.000 0.166
PS00194 1 5 1.000000 1.000 1.000 1 5 0.999840 1.000 0.062
PS00198 1 12 0.999900 1.000 0.851 1 12 0.999970 1.000 0.784
PS00209 4 21 1.000000 1.000 0.846 1 26 1.000000 1.000 1.000
PS00211 2 15 1.000000 0.992 0.829 2 15 0.999720 1.000 0.788
PS00215 1 10 0.999700 0.716 0.900 4 29 0.999980 1.000 0.929
PS00217 1 14 1.000000 1.000 0.875 1 14 0.999980 1.000 0.442
PS00225 2 13 0.999500 0.582 0.970 2 13 0.999990 1.000 0.635
PS00281 2 11 1.000000 1.000 1.000 2 11 0.999990 1.000 0.133
PS00283 1 15 0.999900 1.000 0.933 1 15 0.999990 1.000 0.261
PS00287 1 8 1.000000 1.000 0.884 1 8 0.999980 1.000 0.074
PS00301 3 8 1.000000 0.990 0.937 4 16 0.999930 1.000 0.925
PS00338 1 19 1.000000 1.000 0.976 1 19 0.999810 0.988 0.904
PS00339 1 15 1.000000 1.000 0.775 1 15 0.999850 1.000 0.113
PS00340 1 9 0.999900 1.000 0.561 1 9 0.999910 1.000 0.098
PS00343 1 19 0.997700 0.750 0.692 1 19 0.999620 1.000 0.103
PS00372 1 11 1.000000 1.000 1.000 2 28 1.000000 1.000 0.333
PS00399 3 7 1.000000 1.000 1.000 2 9 1.000000 1.000 0.006
PS00401 3 7 1.000000 1.000 0.833 1 17 1.000000 1.000 0.072
PS00402 1 20 0.999900 1.000 0.821 1 20 0.999950 1.000 0.267
PS00422 3 22 0.987800 0.727 0.667 2 20 1.000000 1.000 0.800
PS00435 2 18 1.000000 1.000 0.927 2 18 1.000000 1.000 0.759
PS00436 1 8 1.000000 1.000 0.795 2 18 0.999990 1.000 0.625
PS00490 2 21 1.000000 1.000 0.636 1 14 1.000000 1.000 0.098
PS00548 2 22 0.996100 0.867 0.722 1 55 1.000000 1.000 1.000
PS00589 2 16 1.000000 1.000 1.000 2 16 1.000000 1.000 0.137
PS00599 1 14 1.000000 1.000 0.952 1 14 1.000000 1.000 0.447
PS00606 4 36 1.000000 1.000 1.000 1 15 1.000000 1.000 0.850
PS00624 5 20 0.992200 0.000 0.000 2 21 1.000000 1.000 0.900
PS00626 5 8 0.998200 0.500 0.688 1 12 1.000000 1.000 0.500
PS00637 3 8 0.998800 1.000 0.286 3 8 0.999990 1.000 0.018
PS00639 3 10 1.000000 1.000 0.883 2 8 0.999820 0.984 0.401
PS00640 2 8 1.000000 1.000 0.852 2 8 0.999820 0.984 0.401
PS00643 3 11 1.000000 1.000 0.800 2 15 1.000000 1.000 0.357
PS00656 2 7 0.989900 0.000 0.000 2 7 1.000000 1.000 0.003
PS00659 1 9 1.000000 1.000 0.974 4 10 0.999810 1.000 0.073
PS00675 3 15 1.000000 1.000 0.833 1 8 1.000000 1.000 0.360
PS00676 5 12 0.999900 1.000 0.806 1 8 1.000000 1.000 0.360
PS00678 3 19 0.998400 0.805 0.626 1 14 0.999980 1.000 0.342
PS00687 3 20 1.000000 1.000 0.909 3 20 1.000000 1.000 0.846
PS00697 1 14 1.000000 1.000 1.000 1 14 0.999980 1.000 0.143
PS00700 2 24 0.999800 1.000 0.923 2 24 1.000000 1.000 0.619
PS00716 4 28 1.000000 1.000 0.811 4 28 0.999880 1.000 0.750
PS00741 2 11 0.999600 0.800 0.571 2 11 1.000000 1.000 0.052
PS00760 3 11 1.000000 1.000 0.625 1 8 1.000000 1.000 0.007
PS00761 2 14 1.000000 1.000 1.000 1 8 1.000000 1.000 0.007
PS00831 1 20 1.000000 1.000 0.833 1 20 1.000000 1.000 0.286
PS00850 5 7 0.990400 0.000 0.000 2 14 1.000000 1.000 0.054
PS00867 2 25 1.000000 0.893 0.962 4 10 1.000000 1.000 0.299
PS00869 4 12 0.990000 0.000 0.000 1 40 1.000000 1.000 1.000
PS00881 1 5 1.000000 0.667 0.667 1 5 0.999860 1.000 0.001
PS00904 4 7 1.000000 0.550 1.000 1 14 1.000000 1.000 0.235
PS00933 5 14 1.000000 1.000 1.000 1 23 1.000000 1.000 0.647

Table 16: W < 100, OOPS model, Dirichlet mixture prior, training set entire family.
The table shows detailed performance results for the 75 Prosite families. Shown is
the Prosite accession number of the family, the pass of MEME++ when the best
motif was found, the width chosen by MEME++ for the motif, and the ROC, recall
and precision of the best motif.

41

[Lawrence and Reilly, 1990] Charles E. Lawrence and Andrew A. Reilly. An expec-
tation maximization (EM) algorithm for the identification and characterization of
common sites in unaligned biopolymer sequences. PROTEINS: Structure Func-
tion and Genetics, 7:41-51, 1990.

[Lawrence et al., 1993] Charles E. Lawrence, Stephen F. Altschul, Mark S. Boguski,
Jun S. Liu, Andrew F. Neuwald, and John C. Wootton. Detecting subtle se-
quence signals: A Gibbs sampling strategy for multiple alignment. Science,
262(5131):208-214, 1993.

[Seber, 1984] G. A. F. Seber. Multivariate observations. John Wiley & Sons, Inc.,
1984.

[Swets, 1988] John A. Swets. Measuring the accuracy of diagnostic systems. Science,
270:1285-1293, June 1988.

42

