
Estimating the significance of Average Motif Affin-
ity scores

The Average Motif Affinity (Ama) score of a DNA sequence represents the
total binding affinity a TF. It is defined as the average likelihood ratio of all
positions (sites) on the sequence. The likelihood ratio of a site is the probability
of the site under a motif model, M , divided by the probability of the site under a
background model, B. We represent M as a position specific probability matrix,
and B by the parameters of a zero-order sequence model of DNA. The definition
of the Ama score is given in Eqn. 1.

AMA(X, M) =
1
N

∑
site∈X

Pr(site|M)
Pr(site|B)

, (1)

We assign Ama scores to sequences, and would like to estimate the p-value
of each score. This requires that we somehow estimate the null distribution of
the scores. We would like the p-value assigned to a sequence to be based on
a permuted-letter null model. We could estimate this null score distribution
directly by multiply permuting the sequence and computing the motif-based
score. This is computationally expensive and results in p-values censored below
1/N , where N is the number of permutations we carry out.

To avoid the two limitations of permutation-based p-value estimation, we
take a dynamic programming approach. Our approach first computes the score
distribution of the likelihood ratio score of a single site. This score distribution
assumes two distinct zero-order random sequence models: B, the model used
for computing the likelihood ratio of a site, and B′, the model for a random
(e.g., permuted) sequence. Our approach then uses a second round of dynamic
programming to estimate the distribution of the average of n scores under the
simplifying assumption that the scores of overlapping sites are independent. In
order to reduce computation time, we only compute the score distribution for
certain values of n and for certain values of B′. To assign a p-value to a sequence,
we use interpolation on n and B′ based on its length and base composition. The
details of our p-value estimation approach are described in what follows.

To estimate the score distribution of the likelihood ratio of a site, we adapt
a standard approach often used for log likelihood ratio scores (Bailey and Grib-
skov, 1998). We first convert M to a position-specific log likelihood matrix, M ′,
by dividing each entry in M by the corresponding value in B and taking logs,

Sa,i = log2

Ma,i

Ba
, a ∈ {A, C,G, T}, i ∈ {1, . . . , w},

where w is the motif width. We scale and round the entries to be in the range
[0, . . . , 100] and call this scoring matrix S′. Dynamic programming is then used
to successively compute the score distribution for the first i columns of the
motif, Ti for i = 1, . . . , w. If we define Ti,x = Pr(Ti = x), then the recursion
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Figure 1: Ama p-values of permuted yeast promoter sequences. The
figure shows Q-Q plots of p-values for a synthetic motif used to scan permuted
yeast promoter sequences. Panel a) shows results for p-values without GC-
correction. Panel b) shows results for p-values with GC-correction.

formulas are

Ti,x =

{ ∑
{a|x=S′

a,i
}B′a if i = 1,∑100i

t=0

∑
{a|x=t+S′

a,i
} Ti−1,tB

′
a for i ∈ {2, . . . , w}.

The vector Tw,x contains the distribution for score x, where x is the (scaled)
logarithm of the Ama score for a sequence of length w, the width of the motif.
Since exactly one site will fit in a sequence of length w, we define T

(1)
x = Tw,x.

To compute the score distribution for longer sequences, we use convolution. By
convolving T

(1)
x with itself, we get the distribution for sequences where two sites

will fit, T
(2)
x . Note that during convolution we convert the scaled, log scores, x,

to Ama scores, take their average, and then reverse the conversion. Convolving
the T

(2)
x distribution with itself gives us T

(4)
x . Repeating this trick allows us

to create vectors containing the distributions for n = 1, 2, 4, . . . , L = 2j in
time proportional to log2(L). When computing the p-value of a sequence whose
length is not a power of two, 2j−1 < L < 2j , we interpolate between the p-values
corresponding to sequences of length 2j−1 and 2j , as we describe below.

We have now constructed a lookup table for p-values assuming a particular
sequence model, B′. In order to estimate p-values for sequences with differ-
ent base distributions, we repeat the above steps with different values of B′.
In particular, we construct p-value lookup tables for “balanced” distributions
B′ = fA, fC , fG, fT , where fC = fG and fA = fT . Such distributions can
be specified by a single parameter, e.g. the frequency of G, fG. We choose a
number (typically about 40) of equally spaced values of fG, and estimate their
corresponding score distributions as described above. Using the resulting lookup
tables, we use bi-linear interpolate on fG and log(2L) to obtain the p-value for
the score of a sequence of length L with a GC content of 2 ∗ fG. The extra



factor of two in the length value is due the fact that Ama scores are actually
the average over sites on both DNA strands.

Importance of GC-compensation

The importance of using GC-compensated p-values is illustrated in Fig. 1, which
shows typical results using yeast TF motifs. The figure shows Q-Q plots for a
single motif used to scan all yeast promoters, where the promoters have been
permuted to simulate null data. Without GC-compensation (Fig. 1a), the es-
timated p-values (Y -axis) tend to be smaller than expected (rank p-values, X-
axis). With GC-compensation, the p-values correlated extremely well with the
expected (rank) p-values.

Comparison with Hmm0 p-values

We compare the p-values calculation by Ama (analytical) and Hmm0 (empiri-
cal) both with respect to runtime and correlation. For Hmm0, empirical p-values
are calculated based on shuffled promoter sequences (100x) with parameter val-
ues set according to the literature (Sinha et al., 2008). The experiment was
performed on a 2.66 GHz Intel Xeon processor. Both methods are used to score
the yeast promoters (750 bp) using all 124 yeast TF motifs from our study.
Fig. 2a shows the average runtime in seconds used by either of the programs for
a particular motif size. For motifs of width less than 10, Ama with and without
GC-compensation is at least a magnitude faster than Hmm0. The difference in
runtime becomes less significant with motif widths above 10 when calculating
GC-compensated p-values in Ama.

We previously reported that sequence composition can bias Gomo’s predic-
tion (Bodén and Bailey, 2008). In this study we therefore use GC-compensated
p-values. The histogram in Fig. 2b shows the correlation coefficient of the p-
values calculated by Ama and Hmm0 for each of the 124 motifs in S. cerevisiae.
For most of the motifs the correlation is very high (cc ≥ 0.85).

We find that the correlation declines with increasing motif width. Some
of the longest motifs—ARO80 (23), DAL81 (19), YOX1 (20), SNF1 (17) and
STP4 (15)—show correlations of 0.1, 0.05, 0.26, 0.09, and 0.45 respectively. The
lower correlation observed for p-values of wide motifs may be due to differences
in the underlying scoring schemes. Whereas Ama averages the affinity of all
possible sites in a sequence, Hmm0 averages the affinity only over all possible
configurations of non-overlapping sites.
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Figure 2: Comparison between Ama and Hmm0. a) Run-time of Ama and
Hmm0. Each point shows the average run-time in seconds (Y ) of the Ama or
Hmm0 algorithms using motifs of the given width (X). b) Correlation between
p-values calculated by Ama and Hmm0.

Comparison with alignment-based method

We replaced AMA scores with scores derived from Monkey (Moses et al., 2004)
p-values and evaluated GOMO on the yeast multiple-species datasets. We tested
two functions for scoring a single promoter: 1) the minimum p-value; 2) the
geometric mean of all p-values. Monkey was used to compute the p-value of
the match of each position in the promoter to the given TF binding motif. For
each promoter, Monkey searched a multiple alignment of the upstream regions
of all four yeast orthologs. Monkey used the species tree derived from all yeast
intergenic regions by Kellis et al. (2003), the “HB” model and S. cerevisiae was
used as the “key” species by Monkey in its heuristics. All other Monkey
parameters were defaults. The multiple alignment for each promoter was made
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Figure 3: Multiple-species Gomo prediction accuracy. Each point shows
the average AUC50 of TF-GO term association predictions made by Gomo
in the key species S. cerevisiae. Points labeled “multiple-species” are results
using promoter sequences from the key species and three related species; Mon-
key (Moses et al., 2004) results use Monkey minimum p-value scores instead
of AMA scores. Points labeled “single-species” are results using promoter se-
quences from the key species only, and are shown for comparison. The AUC50 is
computed using a single TF, then averaged over TFs. The X-axis shows the up-
stream extent of promoter sequences (“full”), or the maximum upstream extent
when they are truncated at the first ORF (“intergenic”). For clarity, standard
error bars are shown for the “full” promoter sequence set only; standard error
bars for the “intergenic” promoter set are similar.

using ClustalW2 (Chenna et al., 2003) with all default settings applied to the
same set of orthologous sequences as used by AMA. Monkey-derived scores
(derived from multiple alignments) were then input to single-species GOMO.

As seen in Fig. 3, GOMO achieves substantially lower accuracy using the
minimum Monkey p-value score instead of the AMA score for ranking promot-
ers. The AUC50 for all sizes of upstream regions considered is less than half that
achieved using the AMA score with multiple-species GOMO. The performance
of the geometric mean Monkey p-value score is even worse (data not shown).

Somewhat surprisingly, the minimum Monkey p-value scoring function per-
forms more poorly with GOMO than does the single-species AMA score. This
may be due to several factors. Firstly, Monkey is designed to predict indi-
vidual binding sites, not target genes, and better ways to combine Monkey
scores for predicting target genes may exist, although we are not aware of them.



Secondly, like all alignment-based algorithms, Monkey predictions are only as
good as the alignments on which they are based, and multiple alignment is a
notoriously hard problem. Thirdly, Monkey predictions assume that the posi-
tions of binding sites are conserved, but much research indicates that binding
sites frequently “drift” (Moses et al., 2006). Combining AMA scores, which are
specifically designed to predict TF target genes, and our method of combining
GO-TF association scores in multiple-species GOMO, circumvents each of these
three issues.

Proportion of correct predictions at relaxed false
discovery rates
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Figure 4: Multiple-species Gomo prediction accuracy in yeast: sensitiv-
ity vs. FDR. ROC-like curves for three different versions of Gomo applied to
yeast 1000bp “full” promoter regions are shown. Predictions using all 42 yeast
motifs contained in the gold standard are pooled, and true positive proportion
is plotted as a function of the false discovery rate. The curve labeled “multiple-
species (Monkey)” corresponds to using minimum p-value Monkey-based scores
as input to single-species Gomo.

In order to compare the coverage of single- and multiple-species Gomo pre-
dictions at different FDR values, we create an ROC-like plot. As in an ROC
plot, we plot the true positive proportion (TP/(TP + FN)) on the Y -axis. On



the X-axis, rather than false positive proportion (FP/(TN +FP )), we plot the
false discovery rate (FP/(TP + FP )). In order to plot a single ROC-like curve
for each type of prediction algorithm, we pool all predictions made for all motifs
contained in our yeast “gold standard”, and we use the 1000bp “full” promoter
sequence datasets. We note that such plots allow comparison of the expected
sensitivities of the prediction algorithms at any given false discovery rate.

Figure 4 shows the ROC-like plots for single- and multiple-species Gomo
using the AMA scoring function, and for Gomo using the Monkey (Moses et al.,
2006) multiple-alignment-based scoring function (minimum p-value scores). The
sensitivity of multiple-species Gomo dominates that of the other two algorithms
at all false discovery rates. The relatively poor performance of the Monkey-based
scores is discussed in the previous section (Comparison with alignment-based
method).

Gomo pipeline
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Role-centric regulatory map for H. sapiens NFKB1

To explore the coherence of the roles predicted by multiple-species Gomo in
H. sapiens, and to illustrate one use of such predictions, we create a role-centric
regulatory map using Cytoscape Killcoyne et al. (2009) (Supplementary File 3
and Supplementary File 4). The nodes in the map are H. sapiens TFs and
GO terms, and links indicate the most-specific predicted GO term of a TF. As
an example, we explore the relationship of NFKB1 to other TFs by extracting
the portion of the map containing NFKB1 and its nearest “neighbors”—all TFs
that share a most-specific predicted GO term with NFKB1 (Fig. 6).

The NFKB1 role-centric regulatory map contains over 50 TF role predictions
made by multiple-species Gomo, and identifies 14 “neighbor” TFs. Almost all
of the role predictions for NFKB1 made by Gomo involve immune response,
an important known function of this TF. Five of NFKB1’s neighbor TFs are
connected to it via immune response-related GO terms, and are also important
regulators of immune response: REL, RELA, TLX1-NFIC, and SPIB, TAL1-
TCF3 Hayden and Ghosh (2004); Hoffmann et al. (2004); Schotte et al. (2003);
Voronova and Lee (1994); Kim et al. (2002); Palomero et al. (2006). One of these
neighbor TFs—TAL1-TCF3—is known to directly regulate NFKB1 Chang et al.
(2006). Two others, REL and RELA, which are known to form heterodimers
with NFKB1 Hayden and Ghosh (2004), are also linked to NFKB1 in the map
via the GO term “I-kappaB/NF-kappa complex”. The remaining nine neigh-
bor TFs are connected to NFKB1 via very general GO terms such as “system
process” and “extracellular space”. Interestingly, three of these nine TFs are
known to share regulatory targets with NFKB1 and to be active during immune
response: GATA-2 Ferla et al. (2002), SRF Pierce et al. (1995) and YY1 Tone
et al. (2007). Although anecdotal, these results illustrate that the TF role
predictions made by multiple-species Gomo can reveal biologically important
relationships among H. sapiens TFs, in addition to discovering their individual
biological roles.
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