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Research Paper

Discrimination of Non-Protein-Coding Transcripts from Protein-Coding mRNA

ABSTRACT
Several recent studies indicate that mammals and other organisms produce large

numbers of RNA transcripts that do not correspond to known genes. It has been suggested
that these transcripts do not encode proteins, but may instead function as RNAs.
However, discrimination of coding and non-coding transcripts is not straightforward, and
different laboratories have used different methods, whose ability to perform this discrim-
ination is unclear. In this study, we examine ten bioinformatic methods that assess protein-
coding potential and compare their ability and congruency in the discrimination of
non-coding from coding sequences, based on four underlying principles: open reading
frame size, sequence similarity to known proteins or protein domains, statistical models
of protein-coding sequence, and synonymous versus non-synonymous substitution rates.
Despite these different approaches, the methods show broad concordance, suggesting
that coding and non-coding transcripts can, in general, be reliably discriminated, and
that many of the recently discovered extra-genic transcripts are indeed non-coding.
Comparison of the methods indicates reasons for unreliable predictions, and approaches
to increase confidence further. Conversely and surprisingly, our analyses also provide
evidence that as much as ~10% of entries in the manually curated protein database
Swiss-Prot are erroneous translations of actually non-coding transcripts.

INTRODUCTION
A fundamental goal of genomics is to catalog all of the expressed products encoded in

a genome. Annotations of mainly protein-coding genes have been published simultaneously
with genome sequences, including those of human and mouse,1,2 but since then evidence
for large numbers of novel transcripts, many of which do not seem to encode proteins, has
appeared from large-scale cDNA sequencing and interrogation of genome tiling arrays.3-7

Establishing which transcripts encode proteins and which do not is essential for compre-
hending the repertoire of genomic products, but to our knowledge reliable criteria for
making this distinction have not been developed, simply as a consequence of the earlier
and still general assumption that most RNAs encode proteins and the fact that the large
numbers of non-coding transcripts were unexpected. Moreover, different studies have used
different methods to identify protein-coding sequences, and reciprocally to suggest that
others are non-coding, but the reliability and congruence of these different methods have
not been compared and assessed.

It is not easy to prove definitively that a transcript encodes a protein. One approach is
to synthesize the protein artificially, raise an antibody against it, and use the antibody to
probe whether the protein is expressed in vivo. However, this method is time-consuming
and expensive. Definitive proof that a transcript does not encode a protein, on the other
hand, is well-nigh impossible, since the protein might only be expressed in very rare
circumstances, or the observed transcript (a cDNA for example) might represent a fragment
of a longer transcript that has protein-coding capacity elsewhere.

Lacking definitive practical experimental methods, a battery of bioinformatics criteria
that assess the protein-coding potential of transcripts can be applied. If most of these
criteria agree, especially those that are predicated on different features or characteristics of
protein-coding sequences, it would increase the confidence that the sequence in question
is or is not protein-coding. To evaluate this approach, and to assess the congruence of
different methods when applied to large data sets that appear to contain large numbers of
non-coding sequences as well as reliably known protein-coding sequences, we applied ten
computational methods to the 102,801 FANTOM mouse cDNA sequences and the
Swiss-Prot database.
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Open reading frame-based methods. Proteins are encoded in
open reading frames (ORFs) comprised of sequences of triplet
codons beginning with ATG and ending with a stop codon. Since
three out of sixty-four codons encode stops, ORFs much greater
than 100 codons are unlikely to appear by chance in non-coding
sequences of average base composition. On the other hand, protein-
coding ORFs are often, if not usually, larger than 100 codons, and
so the presence of an ORF ≥100 codons is frequently taken as a
rough indication of the likelihood that the sequence is, or is not,
protein-coding. (In this study, we only identified full ORFs bounded
by ATGs and stop codons. Relaxing this criterion to find truncated
ORFs as well does not increase the concordance of this method with
the others (data not shown), suggesting that the dataset has few
truncated ORFs, and the sensitivity increase from finding these cases
is outweighted by a decrease in specificity.)

A more sophisticated approach is mTRANS which strives to
account for experimental errors in cDNA sequences that could
corrupt open-reading frames either by introducing false frame shifts
or stop codons. Sequencing errors are corrected by aligning the
cDNA against the genome and constructing a “virtual cDNA” from
the genomic exons. cDNA truncation and intron retention are
assessed by comparing the cDNA to other transcribed sequences in
the EST database. Presence of downstream A-rich potential internal
priming sites and susceptibility to non-sense mediated decay are also
considered as they reduce the mRNA-like characteristics of the
cDNA in question. Each cDNA receives a cumulative score based on
ORF size and evidence for or against the various kinds of experimental
error, and cDNAs scoring above a threshold are considered coding
(M. Furuno, in preparation).

Protein and domain similarity-based methods. The most com-
mon method is BLASTX in which transcripts (cDNAs) are translated
in all three reading frames and compared to a database of known
proteins.8 If a statistically significant similarity is found, it may be
deduced that the sequence encodes a related protein, or is perhaps a
pseudogene. Simple repeats are filtered using the SEG program,
since they violate the statistical assumptions and lead to spurious
matches.9 Some proteins in the database are partly derived from
interspersed repeats and align to many cDNAs. Such alignments
cannot be taken as protein-coding evidence, since most interspersed
repeats are transposon fossils and do not encode proteins. Hence we
also filtered interspersed repeats using RepeatMasker.10

The rsCDS method was developed to identify coding regions of
known genes or those that are highly similar to known genes even if
there are frameshift errors.11 It is based on FASTY alignments of the
cDNAs against a database of known proteins.

It is also possible to search for similarity to known protein
domains, which is useful where the sequence may share a common
domain type, but not the entire sequence, with known proteins in
the database, as distantly related proteins often share functionally or
structurally similar domains with subtle sequence signatures. Pfam is
a collection of statistical models (hidden Markov models—HMMs)
of such domains, which may enable identification of related proteins
that are too divergent to be picked up by alignment methods such as
BLAST.12 An alternative is SUPERFAMILY, which is a library of
HMMs of domain superfamilies according to the SCOP classification
of protein structures.13

Methods based on statistical models of mRNA. ESTScan employs
a hidden Markov model of mRNA sequences, which allows for
sequencing errors and truncations.14 The optimal (Viterbi) path
through the model, which may or may not include a protein-coding

region, is found for each cDNA. An alternative method, DIANA-
EST, uses a combination of artificial neural networks and statistics
for the characterization of coding regions within transcript
sequences, allowing for sequencing errors.15

Comparative methods utilizing synonymous/non-synonymous
substitution rates. We investigated two methods of this type:
CSTminer employs a rapid alignment method (BLAT) to find
homologs of each cDNA in a database of nucleotide sequences (in
this case, the human, rat and dog genomes and mammalian mRNAs
in RefSeq). The alignments are then recalculated using a more careful
technique, and regions showing an excess of synonymous vs. non-
synonymous substitutions at the nucleotide level and of conservative
vs. non-conservative replacements at the amino acid level are flagged
as coding.16,17

CRITICA, originally a bacterial gene finder, is a hybrid method
that combines comparative analysis with statistical analysis of coding
sequences.18 Initial coding predictions are derived from regions with
high synonymous versus non-synonymous substitution rates in
nucleotide alignments. Sequence statistics of predicted coding
regions are then tallied, and combined with the comparative evidence
to repredict coding regions. This statistical analysis and reprediction
is iterated several times.

Other methods. Our choice of methods was inevitably somewhat
ad hoc, but the ten methods outlined above is a diverse and repre-
sentative selection of approaches that examine different lines of
evidence regarding the coding or non-coding status of transcripts.
Other promising techniques include bacterial gene finders such as
GeneMark,19 dictionary-based protein identification20 and assessment
of whether predicted secondary structures of putative proteins
resemble those of real proteins.21 Comparative gene finders such as
TwinScan and SGP have become popular recently, but these methods
tackle the harder problem of identifying spliced protein-coding
genes in DNA, and are not directly suited to analyzing RNA.22,23

In recent years algorithms for identifying conserved RNA struc-
tures have appeared, such as QRNA, RNAZ, DDBRNA and RNA
profile.24-27 These methods are sometimes portrayed as non-coding
RNA gene predictors. However, this is misleading: they identify
conserved elements of RNA secondary structure that can and do
occur in mRNA as well as ncRNA.24-27 Moreover, there is no reason
why non-protein coding RNAs must have conserved secondary
structures, especially if their function is based on primary sequence
interactions with other RNAs, as is the case for natural antisense
transcripts. Thus RNA structure analysis is not considered in this
study.

The FANTOM mouse cDNA collection. The FANTOM projects
obtained cDNA sequences for 102,801 mouse transcripts from many
tissues and developmental stages, using the cap-trapper technique to
enrich for full-length transcripts and aggressive subtraction/normal-
ization to get rare transcripts.4,28,29 The sequences are accurate but
not error-free: 91.7% of bases have phred/phrap score ≥30, corre-
sponding to an error rate <1 in 1,00029 (FANTOM 2 data). There
is a low contamination rate, with 0.26% E. coli DNA30 (FANTOM
2 data). The average length is 2,146 bases. Each cDNA was manu-
ally annotated through the efforts of hundreds of curators and
thousands of person-hours.31 Protein-coding regions were annotated
with the assistance of a graphical interface showing the results of
various automatic predictions, including (for FANTOM 3):
CRITICA, longest ORF, mTRANS, rsCDS, and Pfam. Two further
CDS predictors employed during FANTOM 3, DECODER and
CombinerCDS, are not considered here, because as used in FANTOM
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they annotate a CDS in every clone. Here we also assess how these
manual annotations compare to the ten computational methods.

cDNA sequences may be subject to artifacts such as misorienta-
tion, truncation/internal priming, and immaturity (incomplete
removal of introns), so that protein-coding ORFs may be disrupted
or missing. The FANTOM sequences are rarely misoriented, since
67,401 of them use the canonical GT-AG splice signal and only 199
of them exhibit the reverse signal CT-AC, and even these may be
genuine.5 A significant number were annotated as truncated and/or
immature, based on their genomic coordinates relative to other
transcripts. It also appears that many non-coding transcripts were
internally primed at A-rich sequences,32 but at least some of these are
fragments of longer non-coding transcripts.33 Moreover, large-scale
characterization of transcript endpoints reveals more variability than
previously appreciated, and suggests that many cDNAs containing
partial ORFs are in fact full-length.4 So the extent of truncation and
immaturity artifacts is unclear.

The methods used here do not really allow for gross artifacts,
with the notable exception of mTRANS. This study focuses on
coding/non-coding discrimination rather than the orthogonal
problem of artifact detection. Artifacts are entirely a function of the
technology used to obtain the cDNA sequences, and associated
quality control procedures, whereas coding/non-coding discrimination
is a fundamental biological question. However, we have employed a
conservative procedure to eliminate truncation artifacts (see Materials
and Methods: Full length support), in order to derive reliable sets of
coding and non-coding FANTOM sequences.

There are some transcripts that pose unique problems for coding/
non-coding discrimination, because they resemble protein-coding
sequence, but cannot be translated in the usual way owing to reading
frame disruptions. These include transcribed pseudogenes, and more
generally we term these transcripts pseudo-messenger RNA.34

These transcripts may themselves be functional as regulatory
RNAs,35 and are best detected by special-purpose methods, as
described elsewhere.34

MATERIALS AND METHODS
FANTOM cDNA sequences. The RepeatMasked sequences were

obtained from ftp://fantom.gsc.riken.jp/FANTOM3/repeats/fantom3_
total103k_r2.masked.fasta.gz.

BLASTX. The sequences were searched against the UniRef90 database
(downloaded 9-1-2004) using blastall 2.2.10 with options -p blastx -e 0.01
-m9 -S1-a2 -U T.

Pfam. The sequences were searched against Pfam 12.0 using estwisedb
with options -sum -quiet -pfam -dnas. Reverse-strand predictions were ignored.

SUPERFAMILY. The sequences were translated in all six frames and
searched against the SUPERFAMILY database. cDNAs with E-values <0.01
were predicted as coding. Reverse-strand predictions were ignored.

ESTScan. ESTScan 2.0b was applied to the sequences with options -d
-500 -i -500 -M MkTables/mm.smat (hs.smat for the human sequences).
Reverse-strand predictions were ignored.

DIANA-EST. DIANA-EST was applied to the sequences as follows: est
<fasta-seq-filename> -1 120. DIANA was trained as follows. All the human
proteins whose starts were sequenced at the amino-acid level were manually
collected and full-length mRNAs for these proteins were retrieved.
Three-quarters of these were used for the extraction of the training data and
one quarter for the extraction of the test data. To extract the training and
test data, the EMBL database was searched for EST entries corresponding to
these cDNAs. It was then determined if these ESTs were coding/non-coding,
strand on which it was coding and whether it had start and stop, based on
the alignment of the ESTs to the cDNAs. Finally, these ESTs were used for
training and determining the parameters of the EST analysis.

CSTminer. The cDNAs’ homologous sequences in the human, rat and
dog genomes and mammalian RNAs in RefSeq were detected using BLAT.
(The human sequences were aligned to the mouse instead of the human
genome.) Then alignments of Conserved Sequence Tags (CSTs) were con-
structed by BLAST (wordsize = 7, expect = 1E-5). The protein coding
potential of each CST was assessed through the computation of a coding
potential score (CPS). CSTs were labeled as follows: CST_HCOD: high
confidence coding CST, CPS≥7.67; CST_LCOD: low confidence coding
CST, 6.41≤CPS≤7.67; CST_NCOD: non-coding CST, CPS < 6.41;
CST_GREY: unlabelable CST (>95% sequence identity). For the binary
analysis (Fig. 1A), clones classified as CST_HCOD or CST_LCOD were
counted as coding, and clones classified as CST_NCOD, CST_GRAY, or
None were counted as non-coding. For the trinary analysis (Fig. 1B), clones
classified as CST_NCOD were counted as non-coding, clones classified as
CST_HCOD that did not have a highest-scoring prediction on the reverse
strand were counted as coding, and all other cases were counted as undefined.

CRITICA. The sequences were aligned with homologs in the NCBI nt
database (downloaded 19-1-2004) using discontiguous MegaBLAST with
options -e 1e-4 -D 1 -F “m D” -U T -J F -f T -t 18 -W 11 -A 5 0 -q -2 -G
5 -E 2. We modified CRITICA 1.05 b to handle large files, and analyzed the
alignments using iterate-critica with options -no-sdscores -fraction-coding =
0.5 -genetic-code = 1 -frameshift-threshold = 10. Reverse strand predictions
were ignored.

FANTOM manual annotations. The annotation results were obtained
from ftp://fantom.gsc.riken.jp/fantomdb/3.0/anndata.txt.gz. cDNAs with a
cds_location other than No CDS, 5'UTR or 3'UTR were considered coding;
the remainder were considered non-coding.

Full-length support. The 5' and 3' ends of each FANTOM cDNA were
verified by support from independent RNA sequences, 5' and 3' ESTs,
CAGE tags (~20 nt sequences adjacent to the 5' cap), and GIS and GSC
ditags (paired ~20 nt sequences from both ends of full-length transcripts).
These datasets have been described elsewhere,4 and are available from the
FANTOM 3 website (http://fantom3.gsc.riken.jp/). cDNAs were not
considered unless they mapped unambiguously to the genome, and had at
most 5 nt of sequence unaligned at the end being considered. 3' ends
upstream of A-rich sequences (>10 As in 20 nt immediately downstream)
were discarded, since they may reflect internal priming of longer transcripts.
A 5' end was verified by meeting any of the following criteria: 2 CAGE tag
starts within ±15 nt, 3 CAGE tag starts within ±60 nt, 4 CAGE tag starts
within ±100 nt, 1 GSC ditag start within ±0 nt, 2 GSC ditag starts within
±50 nt, 1 GIS ditag start within ±15 nt, 1 RIKEN 5’EST start within ±3 nt,
2 RIKEN 5' EST starts within ±100 nt, 1 non-RIKEN 5’ EST start within
±2 nt, 2 non-RIKEN 5' EST starts within ±100 nt, 1 other FANTOM
cDNA start within ±25 nt, 1 non-RIKEN RNA start within ±50 nt. A 3'
end was verified by meeting any of the following criteria: 1 GSC ditag end
within ±0 nt, 2 GSC ditag ends within ±50 nt, 1 GIS ditag end within ±15
nt, 1 RIKEN 3' EST end within ±2 nt, 2 RIKEN 3' EST ends within ±100
nt, 1 non-RIKEN EST end within ±7 nt, 2 non-RIKEN 3' EST ends with-
in ±100 nt, 1 other FANTOM cDNA end within ±25 nt, 1 non-RIKEN
RNA end within ±50 nt. These numbers were chosen based on the amount
of each type of supporting evidence, such that each criterion has less than
1 chance in 1000 of occurring if the sites are randomly scattered across the
genome. Sequences from the same clone (e.g., ESTs) were not counted as
independent evidence. Both orientations were considered for GSC ditags.
This method does not account for systematic truncation errors (other than
internal priming).

RESULTS
The output of multiple coding/non-coding discrimination methods

applied to the 102,801 FANTOM cDNAs is voluminous and complex: we
initially consider simplified binary yes/no predictions listed in Table S1 and
summarized graphically in Figure 1A. Each column corresponds to one
method and each row to one combination of binary outcomes: red means
coding and blue noncoding. A certain level of consistency among the methods
is immediately apparent: 30,209 sequences (29%) are predicted as coding
(24%) or non-coding (5%) by all methods, 58,967 (57%) by all but (up to)
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one method, and 79,371 (77%) by all but
(up to) two methods. The predictions of each
pair of methods are positively correlated
(Table 1), and the highest correlations are
often but not always among methods based
on the same underlying principle. The
strongest correlation is between CRITICA
and BLASTX, which are not only methods
that rely on quite different criteria (sequence
similarity and the pattern of synonymous/
non-synonymous substitutions, respectively)
but are also the two methods that agree most
often with the majority vote of all methods.
We suggest that the consensus of the methods
reflects the true coding status of a transcript,
which implies that the individual accuracy
of each method is revealed by its level of
concordance with the others. However, there
appear to be sizeable discrepancies among
the methods, casting doubt on the coding
status of many cDNAs. Fortunately, most
of the discrepancies stem from simple,
predictable reasons for unreliability in some
of the predictions.

SUPERFAMILY and Pfam make the
fewest coding predictions, but their coding
predictions usually agree with most other
methods. This outcome is not surprising,
since Pfam and SUPERFAMILY do not
cover all protein domains that exist. So their
coding predictions are reliable, but their
non-coding predictions are not since we
might be dealing with proteins that lack
well-characterized domains, of which there
remain many. These methods do occasionally
make coding predictions that are contradicted
by most other methods, some of which can
be explained by dubious matches to repetitive
sequences. For example Pfam identifies a
protamine P1 domain in a low-complexity
region of clone 4930432I21 and a Gag
domain in an LTR element of clone
I1C0023K22, while SUPERFAMILY finds a
ribonuclease H-like domain in an endogenous
retroviral sequence of clone 1200015M12.
These hits to retrotransposons are under-
standable because active retrotransposons
encode functional proteins, and their many
inactive copies contain disabled homologs,
i.e., pseudogenes.

CSTminer, ESTScan and DIANA make a
substantial number of coding predictions
that are not supported by most other methods. For ESTScan and CSTminer,
these unsupported predictions have markedly lower scores than average
(Fig. 2A and B), so their agreement with the other methods is actually
better than it appears from the binary results. Unsupported DIANA predic-
tions also have below-average scores (Fig. 2C), but there is not such a clean
separation. If a high-scoring ESTScan or CSTminer prediction contradicts
most other methods, further investigation may be warranted, but low
CSTminer scores and ESTScan scores below about 300 can be regarded as
weak and unreliable predictions.

CSTminer actually produces complex predictions (including high-confi-
dence coding, low-confidence coding, non-coding, and undefined) that are
greatly simplified in Figure 1A. Of the 6,208 clones designated coding by
CSTminer alone, 3,852 (62%) are low-confidence predictions. In comparison,
only 19,407 clones in total (19%) are low-confidence coding. In a further

1,287 out of 6,208 cases (21%), the strongest coding prediction is on the
reverse strand; the corresponding figure for all clones is 8,777 (9%). These
cases may reflect non-coding transcripts that are cis-antisense to protein-
coding exons.

For such a crude method, the longest ORF shows a surprisingly high
level of concordance with the others. To our knowledge, this is the first
evidence that the traditional 100 aa threshold is a relatively good choice.
Almost all the coding predictions made by longest ORF alone or by longest
ORF and mTRANS alone (i.e., that are not supported by other methods)
are just above the threshold of 100 codons (Fig. 2E): these are almost
certainly non-coding since we expect a significant number of ORFs slightly
greater than 100 codons to occur by chance in such a large dataset.
Conversely, some cDNAs predicted as non-coding by longest ORF but
coding by most other methods exhibit frameshifts or truncations that disrupt

Discrimination of ncRNA from mRNA

Figure 1. Comparisons of methods to discriminate coding from non-coding transcripts. Each row corre-
sponds to one set of outcomes from each method: red is “coding”, blue is “non-coding”, and purple is “no
confident prediction”. The height of each row is proportional to the number of sequences with that set of
outcomes. The percentage of sequences predicted as coding by each method is indicated at the base of
each column. (A) Eleven sets of binary coding/non-coding predictions for the 102,801 FANTOM cDNAs.
(B) Eleven sets of trinary coding/non-coding predictions for the 92,122 FANTOM cDNAs that remain after
excluding pseudo-messenger RNAs. (C) Seven sets of trinary coding/non-coding predictions for 1,078
human mRNA sequences linked to the Swiss-Prot protein database.
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the reading frame, and others encode known proteins that are shorter than
100 aa such as Cox8a and Cox6b. As expected, mTRANS makes quite
similar predictions to longest ORF. Coding predictions by mTRANS that
are unsupported by most other methods have borderline scores (Fig. 2F),
indicating that mTRANS scores below about 500 are less reliable.

We expected BLASTX to behave similarly to Pfam and SUPERFAMILY,
i.e., to identify proteins with homologs in the UniRef90 database accurately,
but to miss many proteins without known homologs. In fact we observe the
opposite: BLASTX almost always makes a coding prediction when most
other methods do so, but it also makes a number of coding predictions that
are not supported by most other methods. This suggests that almost all
mouse proteins have recognizable homologs in the database. The database
includes proteins derived from FANTOM 1 and 2, but not FANTOM 3.

Given the BLASTX E-value threshold of 0.01, some false positive coding
predictions are expected. BLASTX coding predictions that are unsupported
by most other methods do have higher E-values than average (Fig. 2G), but
many of them are still rather significant with E-values <10-8, so this is not
the whole explanation. Some cases appear to be artifacts of the E-value
calculation, e.g., a nine-codon region of clone 1700122E12 aligns with
thirteen separate regions of a repetitive viral protein, receiving a collective
E-value of 10-12. Other cases are variants of protein-coding genes that include
very small portions of the protein-coding region, e.g., clone 0610023I12
includes 26 codons of TFF-I interacting peptide 20: the correct classification
in such cases is not clear.

Other false positives arise from dubious entries in the protein database.
For example, clone 1110021L09 aligns to just one protein, Q8BTD6, with
100% identity. This protein entered the database via an earlier annotation
of this clone, so this is a self-referential alignment without predictive value.
Among 701 clones predicted as coding by BLASTX and rsCDS, and non-
coding by all others except curation and CSTminer, 242 (35%) only have
alignments with 100% identity. There might also be hits to false proteins
from other species with less than 100% identity. This problem reveals that
extremely good alignments with “known” proteins are not necessarily reliable
indicators of protein-coding capacity.

As expected, rsCDS makes similar predictions to BLASTX. The lack of
repeat masking in this method leads to false coding predictions: in the cDNAs
predicted as coding by rsCDS but non-coding by most other methods, the
predicted coding regions are largely covered by repeats (Fig. 2D).

CRITICA shows the highest degree of concordance with the other
methods, and makes the fewest recognizable mistakes. A few false positives
are expected using the default p value cutoff of 10-4, and indeed the nine
cDNAs predicted as coding by CRITICA alone have borderline p values.
Some false negatives are apparent among the few cDNAs predicted as non-
coding by CRITICA but coding by most other methods. For example clone
1200010C05 encoding Pex7 has a single nucleotide insertion in the protein-
coding region near the ATG, and there is no alternative in-frame ATG.
Although CRITICA initially finds arbitrary regions with high synonymous/
non-synonymous rates, it only reports those that it can extend to an open
reading frame beginning with an ATG and ending with a stop codon. Thus
it fails on 1200010C05 but makes a coding prediction for clone
2510005J23, which encodes the same protein but lacks the frameshift.

The curated results generally agree well with the consensus of the
computational methods, but there are a few outliers, which often look like
human errors. For instance, a 14 aa protein was annotated in clone
0710008P21, but all the computational methods agree that it is non-coding
and it overlaps the 5’UTR of another gene, Slc20a1. Some variation in
annotation quality is almost inevitable in distributed projects, and this
comparison offers a powerful way to flag suspect annotations for rechecking.

By examining discrepancies between the methods, we have found situa-
tions where coding or non-coding predictions are unreliable. This knowledge
allows us to obtain more realistic, trinary predictions from the methods:
“coding”, “non-coding”, or “no confident prediction”. We assign “no confident
prediction” in the following situations: ESTScan score <300, mTRANS
score <500, longest ORF <50 codons (including <100 codons), rsCDS
predictions >20% repetitive, BLASTX hits with 100% identical alignments
only, and low confidence CSTminer predictions (see Supplementary
Materials). Lack of SUPERFAMILY or Pfam hits is also treated as “no
confident prediction” rather than “non-coding”. Finally, we identified and
removed 10,679 pseudo-messenger RNAs.34 These modifications reveal
greater concordance among the methods (Fig. 1B, Table 2, Table S2):
60,453 clones (66%) are predicted as coding or non-coding by all methods
that make a confident prediction, 79,177 (86%) by all but one method, and
87,340 (95%) by all but two methods.

Since it is inconvenient to apply so many computational tools, we inves-
tigated how well the results can be reproduced by a majority vote of just

Table 1 Correlation coefficients among eleven sets of coding/non-coding predictions for the 102,801 
FANTOM cDNAs
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three methods. Up to 96% agreement with the majority vote of all methods
can be achieved, for example using CRITICA, BLASTX, and mTRANS
(Table 3). There are many combinations of methods that perform close to
optimally, although they tend to include CRITICA, and tend to involve
three different underlying principles. Remarkably, methods such as Pfam
that individually have a low concordance with the majority can appear in
some of the best trios. This implies that Pfam supplies useful information
complementary to the other methods, and can be used to increase the
confidence that a sequence is protein-coding, but not to increase the confi-
dence that it is not. Nonetheless, CRITICA on its own reflects the consensus
of the methods almost as well as the best trio (Table 1).

Reliable discrimination of FANTOM coding and non-coding tran-
scripts. In order to identify coding and non-coding transcripts reliably, it is
necessary to consider that some cDNAs may be artifactual. To address this
problem, we utilized the massive datasets of RNA 5' and 3' sequence tags
from FANTOM 3 and other sources to find independent experimental
support for the 5' and 3' end of each cDNA (see Materials and Methods:
Full-length support). In total, 41,025 cDNAs (of which 2,541 are pseudo-
messenger RNAs) have support for both ends, and thus are likely to represent

real, full-length transcripts. The remaining cDNAs are not necessarily
artifactual: evidence for their being full-length is simply lacking. Combining
the full-length data with the coding/non-coding discrimination results gives
conservative numbers of coding and non-coding transcripts (Table 2). The
proportion of non-coding RNAs with full-length support is smaller, but still
several thousand.

Non-coding transcripts in Swiss-prot. We also applied the methods
(apart from mTRANS, which is tuned for high-throughput mouse cDNAs)
to 1,078 human transcripts encoding proteins listed in the Swiss-Prot
database,36 partly to test our approach on known protein-coding transcripts,
and partly to look for incorrectly annotated non-coding transcripts. As
expected, the methods indicate a clear coding consensus for most transcripts,
but they also suggest that about 10% of the sequences listed in Swiss-Prot
are in fact non-coding (Fig. 1C, Table S3). Tellingly, the coding and non-coding
predictions are highly correlated between the methods, which enhances their
credibility. Note that BLASTX and rsCDS rely on comparison to a database
of known proteins, which includes Swiss-Prot, so they naturally have high rates
of coding predictions. The transcripts with a non-coding consensus invari-
ably correspond to poorly characterized Swiss-Prot proteins. For example,

Discrimination of ncRNA from mRNA

Figure 2. Analysis of minority protein-coding predictions. In these plots the y-value indicates the proportion of cDNAs with quantity labeled on the x-axis < the
x-value. E, ESTScan; C, CSTminer; D, DIANA; R, rsCDS; L, longest ORF; M, mTRANS; B, BLASTX. “Only,” cases predicted to be coding by this method but
non-coding by all other methods; “+,” cases predicted to be coding by these two methods but non-coding by all other methods; “all,” all coding predictions
by this method.
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sequence AK024977 is said to encode a protein of unknown function called
C21orf97, but this transcript overlaps the 3'UTR of another gene (PDXK)
and there is little evidence for its coding status. The methods also high-
lighted eight testis transcript Y mRNAs, which are described as “apparently
non-coding” in the original publication.37 Hence the methods reveal
non-coding RNAs that have been mistakenly annotated as protein-coding.

DISCUSSION
The concordance of computational methods based on diverse

underlying principles allows coding and non-coding transcripts to be
discriminated with high confidence. The main drawback of using a
battery of computational methods is the inconvenience of obtaining
and applying all of these algorithms. Fortunately, the results can be well
approximated using just three methods based on different principles,
or even just using CRITICA, although confirmation from independent
methods would add confidence. We recommend using CRITICA
for the initial analysis, and increasingly more methods if more confi-
dence is desired. We found minor flaws in some of the methods that
could be fixed to increase accuracy and convenience; for example
CRITICA could be made more robust to frameshift errors, and its
current implementation does not scale well to large datasets.

Our results do not provide a definitive picture of which methods
are “better” than others: to do so was not the aim of this study. This

is partly because we did not control for differences
in various parameters of the methods: for instance,
it would be interesting to compare CRITICA and
CSTminer using the same homolog detection step
for both. More fundamentally, the methods are
optimized for different aspects of annotation, e.g.,
rsCDS was designed to annotate known proteins
accurately in the presence of frameshifts. The aim
of this study was to assess whether a battery of
diverse methods can be used to discriminate coding
from non-coding transcripts, not to judge which
method is best.

This study confirms that the FANTOM
cDNA set divides into about two thirds protein-
coding and one third non-coding (Table 2).4

When considering only transcripts with experimen-
tal support for both ends, the proportion of
non-coding RNA decreases but remains non-neg-
ligible (Table 2). This result is slightly at odds with
tiling array experiments, which suggest that there
are at least as many non-coding as coding tran-
scripts.5,6 However, noncoding RNA may well be
underrepresented in the FANTOM set because
they are expressed at low levels, too short (e.g.,
miRNA) or too long (e.g., AIR) for the cloning
procedure,33 or because they lack polyA tails.5

We cannot rule out the possibility that some
transcripts designated non-coding by all the
methods encode highly unusual proteins. Short,
rapidly evolving proteins with unusual codon usage
patterns could be invisible to all the methods.
Extremely short proteins, e.g., <10 a.a., would not
provide enough statistical signal to be detected by
any method. Conversely, the presence of a clear
protein-coding region does not guarantee that a
transcript gets translated: there could be splice
variants that combine protein-coding exons with

translation inhibition signals.
We have shown that the protein databases contain a small fraction

of erroneous translations from non-coding sequences, and this must
explain some proportion of so-called orphan proteins that lack
similarity to any well-characterized protein. The approach presented
here could be used to screen protein databases systematically for such
errors.

This reclassification of previously known transcripts from coding
to non-coding, and the large numbers of transcripts that are reliably
predicted not to encode proteins (i.e., are not mRNAs), also suggest
a reevaluation of the role of non-coding RNA in biology, particularly
eukaryotic biology.38,39 While it is sometimes suggested that these
non-coding RNAs may be the consequence of “transcriptional noise”,
i.e., background transcription from illegitimate and irrelevant
promoters, there is little evidence that this actually occurs, and some
evidence to the contrary,40 as opposed to the stochastic firing of
legitimate promoters that has been well-documented in a number of
systems and is also referred to as transcriptional noise.41,42 It is also
worth noting that many putative non-coding RNAs appear to show
differential expression in different tissues,32 suggesting that their
expression is purposeful. Longer functional non-coding RNAs (as
opposed to shorter ones like sno- and miRNAs) are not highly
conserved at the primary sequence level,43 suggesting that these

Table 2 Numbers of FANTOM cDNAs predicted as coding and non-coding
with different degrees of confidence

Prediction Predicted by All cDNAs* Confidently full-length cDNAs*

Coding All methods! 44,722 (49%) 28,686 (75%)
All methods! but one 53,396 (58%) 32,860 (85%)
All methods! but two 57,385 (62%) 34,112 (89%)

Non-coding All methods! 15,731 (17%) 1,799 (5%)
All methods! but one 25,781 (28%) 2,949 (8%)
All methods! but two 30,059 (33%) 3,497 (9%)

Total cDNAs 92,122 38,484

*Excluding 10,679 pseudo-messenger RNAs. !Excluding methods that make no confident prediction.

Table 3 Agreement between the majority vote of three coding/non-coding
discrimination methods and the majority vote of all eleven 
methods: top ten trios

Method 1 Method 2 Method 3 % Agreement with Majority
Vote of all Methods

mTRANS BLASTX CRITICA 96.4
mTRANS rsCDS CRITICA 96.3
mTRANS CRITICA Curation 96.3
DIANA CRITICA Curation 96.2
rsCDS CRITICA Curation 96.2

ESTScan CRITICA Curation 96.1
Longest ORF CRITICA Curation 96.1

BLASTX CRITICA Curation 96.0
Longest ORF BLASTX CRITICA 96.0

BLASTX Pfam Curation 95.9
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sequences, which presumably have mainly regulatory functions,
evolve more fluidly than protein-coding sequences that are tightly
constrained by strict analog structure-function relationships.44,45

The answer to the question posed in the introduction is that we
can indeed distinguish coding from non-coding transcripts with
high confidence, using a battery of computational analyses, provided
the transcript sequences are accurate and full-length. This need not
have been the case: it is conceivable that the methods might have
had a high degree of discordance with no simple explanation, or that
careful manual annotation considering published experimental data
might have revealed frequent incorrect predictions. Strikingly, the
consensus of the methods turned out to be more believable than two
resources that we had considered using as “gold standards” to test our
approach: the FANTOM manual annotations and the respected,
manually curated Swiss-Prot database. This establishes a more
principled and rigorous approach to answering the most basic question
about the transcripts produced from a genome: whether or not they
encode proteins.
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Note
A description of the mTRANS algorithm is provided in the

additional file entitled mTRANS-F3. In addition, there are three
supplementary data files: Table S1: Eleven sets of binary coding/
non-coding predictions for the 102,801 FANTOM cDNAs. Table S2:
Eleven sets of trinary coding/non-coding predictions for the 92,122
FANTOM cDNAs that remain after excluding pseudo-messenger
RNAs. Table S3: Nine sets of trinary coding/non-coding predictions
for 1,078 human mRNA sequences linked to the Swiss-Prot protein
database.

This Supplemental Material can be found at:
www.landesbioscience.com/journals/rnabiology/supplement/
frith-supdata.zip

References
1. Finishing the euchromatic sequence of the human genome. Nature 2004; 431:931-45.
2. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R,

Ainscough R, Alexandersson M, An P, et al. Initial sequencing and comparative analysis of
the mouse genome. Nature 2002; 420:520-62.

3. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W,
Samanta M, Weissman S, et al. Global identification of human transcribed sequences with
genome tiling arrays. Science 2004; 306:2242-6.

4. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T,
Lenhard B, Wells C, et al. The transcriptional landscape of the mammalian genome.
Science 2005; 309:1559-63.

5. Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana
H, Helt G, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolu-
tion. Science 2005; 308:1149-54.

6. Frith MC, Pheasant M, Mattick JS. Genomics: The amazing complexity of the human
transcriptome. Eur J Hum Genet 2005; 13:894-7.

7. Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, Hua S, Herreman
T, Tongprasit W, Barbano PE, et al. A gene expression map for the euchromatic genome of
Drosophila melanogaster. Science 2004; 306:655-60.

8. Gish W, States DJ. Identification of protein coding regions by database similarity search.
Nat Genet 1993; 3:266-72.

9. Altschul SF, Boguski MS, Gish W, Wootton JC. Issues in searching molecular sequence
databases. Nat Genet 1994; 6:119-29.

10. Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0. 1996-2004, (www.repeatmasker.org).
11. Furuno M, Kasukawa T, Saito R, Adachi J, Suzuki H, Baldarelli R, Hayashizaki Y, Okazaki

Y. CDS annotation in full-length cDNA sequence. Genome Res 2003; 13:1478-87.
12. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall

M, Moxon S, Sonnhammer EL, et al. The Pfam protein families database. Nucleic Acids
Res 2004; 32:D138-41.

13. Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to genome sequences
using a library of hidden Markov models that represent all proteins of known structure.
J Mol Biol 2001; 313:903-19.

14. Lottaz C, Iseli C, Jongeneel CV, Bucher P. Modeling sequencing errors by combining
Hidden Markov models. Bioinformatics 2003; 19:II103-12.

15. Hatzigeorgiou AG, Fiziev P, Reczko M. DIANA-EST: A statistical analysis. Bioinformatics
2001; 17:913-9.

16. Mignone F, Grillo G, Liuni S, Pesole G. Computational identification of protein coding
potential of conserved sequence tags through cross-species evolutionary analysis. Nucleic
Acids Res 2003; 31:4639-45.

17. Castrignano T, Canali A, Grillo G, Liuni S, Mignone F, Pesole G. CSTminer: A web tool
for the identification of coding and noncoding conserved sequence tags through
cross-species genome comparison. Nucleic Acids Res 2004; 32:W624-7.

18. Badger JH, Olsen GJ. CRITICA: Coding region identification tool invoking comparative
analysis. Mol Biol Evol 1999; 16:512-24.

19. Hirosawa M, Ishikawa K, Nagase T, Ohara O. Detection of spurious interruptions of
protein-coding regions in cloned cDNA sequences by GeneMark analysis. Genome Res
2000; 10:1333-41.

20. Shibuya T, Rigoutsos I. Dictionary-driven prokaryotic gene finding. Nucleic Acids Res
2002; 30:2710-25.

21. Liu J, Gough J, Rost B. Distinguishing protein-coding from non-coding RNAs through
support vector machines. PLoS Genetics 2006; 2:e29.

22. Korf I, Flicek P, Duan D, Brent MR. Integrating genomic homology into gene structure
prediction. Bioinformatics 2001; 17(Suppl 1):S140-8.

23. Parra G, Agarwal P, Abril JF, Wiehe T, Fickett JW, Guigo R. Comparative gene prediction
in human and mouse. Genome Res 2003; 13:108-17.

24. Rivas E, Eddy SR. Noncoding RNA gene detection using comparative sequence analysis.
BMC Bioinformatics 2001; 2:8.

25. Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc
Natl Acad Sci USA 2005; 102:2454-9.

26. di Bernardo D, Down T, Hubbard T. ddbRNA: Detection of conserved secondary
structures in multiple alignments. Bioinformatics 2003; 19:1606-11.

27. Pavesi G, Mauri G, Stefani M, Pesole G. RNAProfile: An algorithm for finding conserved
secondary structure motifs in unaligned RNA sequences. Nucleic Acids Res 2004;
32:3258-69.

28. Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y, Arakawa T, Hara A,
Fukunishi Y, Konno H, et al. Functional annotation of a full-length mouse cDNA collec-
tion. Nature 2001; 409:685-90.

29. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito
R, Suzuki H, et al. Analysis of the mouse transcriptome based on functional annotation of
60,770 full-length cDNAs. Nature 2002; 420:563-73.

30. Carninci P, Waki K, Shiraki T, Konno H, Shibata K, Itoh M, Aizawa K, Arakawa T, Ishii
Y, Sasaki D, et al. Targeting a complex transcriptome: The construction of the mouse
full-length cDNA encyclopedia. Genome Res 2003; 13:1273-89.

31. Maeda N, Kasukawa T, Oyama R, Gough J, Frith MC, Engstrom PG, Lenhard B,
Aturaliya RN, Batalov S, Beisel KW, et al. Transcript annotation in FANTOM 3: mouse
gene catalog based on physical CDNA clones. PLoS Genetics 2006; 2:e62.

32. Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K, Frith
MC, Gongora MM, et al. Experimental validation of the regulated expression of large
numbers of noncoding RNAs from the mouse genome. Genome Res 2006; 16:11-9.

33. Furuno M, Pang K, Ninomiya N, Fukuda S, Frith MC, Bult C, Kai C, Kawai J, Carninci
P, Hayashizaki Y, et al. Clusters of internally primed transcripts reveal novel long noncoding
RNAs. PLoS Genetics 2006; 2:e37.

34. Frith MC, Wilming LG, Forrest AR, Kawaji H, Tan SL, Wahlestedt C, Bajic VB, Kai C,
Kawai J, Carninci P, et al. Pseudo-messenger RNA: Phantoms of the transcriptome. PLoS
Genetics 2006; 2:e23.

35. Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K,
Wynshaw-Boris A, Yoshiki A. An expressed pseudogene regulates the messenger-RNA
stability of its homologous coding gene. Nature 2003; 423:91-6.

36. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ,
Michoud K, O’Donovan C, Phan I, et al. The SWISS-PROT protein knowledgebase and
its supplement TrEMBL in 2003. Nucleic Acids Res 2003; 31:365-70.

Discrimination of ncRNA from mRNA

 



Discrimination of ncRNA from mRNA

48 RNA Biology 2006; Vol. 3 Issue 1

37. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping
S, Pyntikova T, Ali J, Bieri T, et al. The male-specific region of the human Y chromosome
is a mosaic of discrete sequence classes. Nature 2003; 423:825-37.

38. Mattick JS. Challenging the dogma: The hidden layer of nonprotein-coding RNAs in
complex organisms. Bioessays 2003; 25:930-9.

39. Mattick JS. RNA regulation: A new genetics? Nat Rev Genet 2004; 5:316-23.
40. Dahary D, Elroy-Stein O, Sorek R. Naturally occurring antisense: Transcriptional leakage

or real overlap? Genome Res 2005; 15:364-8.
41. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell.

Science 2002; 297:1183-6.
42. Blake WJ, M KA, Cantor CR, Collins JJ. Noise in eukaryotic gene expression. Nature

2003; 422:633-7.
43. Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: Lack of conservation

does not mean lack of function. Trends Genet 2006; 22:1-5.
44. Mattick JS, Makunin IV. Small regulatory RNAs in mammals. Hum Mol Genet 2005;

14:R121-32.
45. Mattick JS, Makunin IV. Non-codong RNA. Hum Mol Genet 2006; 15:R17-29.


